Abstract:
The present disclosure provides for heat exchanger assemblies, systems and methods. More particularly, the present disclosure provides for radially-flowing cross flow heat exchanger assemblies and systems that increase primary heat transfer surface, and related methods of use. The present disclosure provides for a cross-flow heat exchanger assembly that can be packaged cylindrically or the like (or other self-enclosed shapes), and where the heat exchanger assembly also increases and/or maximizes primary heat transfer surface area by utilizing a weave-style or interwoven heat exchanger core. A first circuit flow path can be axial or circumferential in nature, and a second circuit flow path can be radial.
Abstract:
A method for heating a production fluid in a fluid heating system includes receiving the production fluid by a pressure vessel, the pressure vessel arranged to receive the production fluid and to provide heated production fluid, receiving a thermal transfer fluid by a tubeless heat exchanger core, the tubeless heat exchanger core disposed at least partially within the vessel, the tubeless heat exchanger core comprising an inner casing and an outer casing disposed around the inner casing, the inner and outer casings defining therebetween a flow passage for a thermal transfer fluid to flow, the tubeless heat exchanger core further comprising a core inlet and a core outlet, and at least one of the core inlet and core outlet being disposed on the inner casing, and wherein the flow passage guides the flow of the thermal transfer fluid from the core inlet to the core outlet and wherein at least a portion of respective outer surfaces of the inner and outer casings are arranged to be contacted by the production fluid, and transferring heat from the thermal transfer fluid to the production fluid through at least a portion of both the inner and outer casings.
Abstract:
A liquid desiccant regeneration system and method of liquid desiccant regeneration are described. The liquid desiccant regeneration system includes a liquid desiccant regenerator having an engine producing a heated exit stream, and at least one dehydrating tube comprising a first water vapor permeable wall. A low concentration liquid desiccant stream feeds into the liquid desiccant regenerator, while a high concentration liquid desiccant stream exiting the liquid desiccant regenerator. A carrier stream and the low concentration liquid desiccant are in contact with opposite sides of the first water vapor permeable wall, and the low concentration liquid desiccant stream is heated by heat from the heated exit stream to drive water from the low concentration liquid desiccant stream through the first water vapor permeable wall to the carrier stream to form a humidified carrier stream. As a result, the desiccant concentration in the high concentration liquid desiccant stream is higher than a desiccant concentration in the low concentration liquid desiccant stream.
Abstract:
A vaporization method includes a preparing step of preparing a vaporizing tube that covers at least a part of a heat exchange unit for cold energy of a Stirling engine and is capable of forming an ascending flow of the liquid flowing from a bottom to a top of the heat exchange unit for cold energy, and a vaporizing step of feeding the liquid in the vaporizing tube to thereby form the ascending flow and bringing the liquid into contact with the Stirling engine to vaporize the liquid. In the preparing step, a flowing direction of the ascending flow is adjusted to suppress occurrence of separated flows of the liquid and gas in the vaporizing tube. In the vaporizing step, the liquid is fed at a flow velocity at which a gas-liquid two-phase flow in which the liquid and the gas are mixed is formed in the vaporizing tube.
Abstract:
An integrated inducer heat exchanger is provided. The integrated inducer heat exchanger includes multiple airfoil devices disposed in an annular array within an inner circular casing and an outer circular casing forming multiple passages for allowing a flow of fluid from a forward side to an aft side of the integrated inducer heat exchanger. The integrated inducer heat exchanger also includes multiple annular manifolds arranged about the outer circular casing configured for supplying a flow of coolant at low temperature from one or more coolant sources and returning the flow of coolant at high temperature to the one or more coolant sources via an external heat exchanger for dissipating heat and multiple transfer tubes connecting the multiple annular manifolds with the multiple airfoil devices for transferring the flow of coolant within the airfoil devices for exchanging heat between the coolant and the fluid passing through the multiple passages.
Abstract:
A combination static mixer and heat exchanger having heat exchanger tubes (1) which are provided over their circumference with fins (2a, 2b) which have a static mixing effect.
Abstract:
A multi-stage thermoacoustic device includes a resonance tube mounted therein a plurality of stacks and a plurality of heat exchangers interlaid with each other adjacent to a second end of the resonance tube. A working fluid is filled in the resonance tube. A driver mounted on a first end of the resonance tube drives the working fluid oscillate in the resonance tube, the working fluid is compressed and expanded and causes temperature oscillation and thermal energy flowing from one end of the stack to the other end. The thermal energy, such as cooling capacity, is finally transferred outward through the heat exchangers on sides of the stacks. The multiple stacks and heat exchangers perform a multiple stage temperature gradient. More thermal energy is transferred, and the working efficiency is improved.
Abstract:
A heating system for a building that includes a furnace having a water jacket surrounding a burner unit. Heated water is circulated from the water jacket to a heat exchange system in the building such as radiators and the water is returned to the water jacket through a return conduit to be reheated. Water from the jacket is also circulated through supplemental conduit through a gas tube water heat exchange apparatus located at the exhaust flue from the furnace for recovering heat from the exhaust gases. Water heated from the exhaust gases returns to the primary circulation system. More specifically, water flows from the cooler portions of the water jacket and/or the return conduit of the main circulation system to the gas-to-water heat exchange unit. Water flows from the gas-to-water heat exchange unit to the relatively warmer portions of the jacket and/or to the primary conduit that delivers water from the jacket to the heat exchange system of the building.
Abstract:
A system for cooling, positioning and supporting phased array microwave modules within a phased array radar system wherein the modules are disposed in cooling tubes, the cooling tubes being arranged to permit coolant to continuously pass in close proximity thereto along channels formed in a coldplate. The channels can be built into a solid member wherein the cooling tubes are hollowed out portions of the solid with channels for coolant formed in the space between cooling tubes. In alternate embodiments, the channels are formed by the spaces between cooling tubes.