Abstract:
A heat recovery system includes a compressor, a solar panel, and a first heat exchanger and a second heat exchanger in fluid connection to form a closed circuit. The compressor is configured to facilitate fluid movement in the fluid circuit between the solar panel, the first heat exchanger and the second heat exchanger. The solar panel includes a plurality of solar cells connected in parallel, and each solar cell includes a plurality of metal tubes for fluid to pass through. A temperature sensor is mounted within each of the solar cells and configured to measure temperature inside the respective solar cell. Each solar cell is connected to the circuit via a respective pressure valve, and the status of the pressure valve is configured to depend on the measurement of the temperature sensor in the respective solar cell.
Abstract:
A micro-combined heat and power (mCHP) system includes a liquid cooled variable speed genset that is located to the exterior of a building and that is provides heat and power to the interior of the building. The genset may be configured to output an electrical supply of between approximately between 500W and 40 kW. A coolant loop may extend from the exterior genset to the interior of a building and is configured to reclaim heat from one or more sources of waste heat at the engine, generator, oil and/or exhaust. The reclaimed heat is then transferred, directly or indirectly, to the air flow path of a building heating system. In one embodiment, the reclaimed heat is transferred to a liquid circuit via a liquid-to-liquid heat exchanger and thence to the cold air intake of a forced air furnace via a liquid-to-air heat exchanger. A thermostat may control heat transfer from the mCHP to the heating system.
Abstract:
An energy-saving system using electric heat pump to recover flue gas waste heat for district heating uses flue gas waste heat recovery tower to absorb the sensible and latent heat in the high-temperature flue gas by direct contact heat and mass transfer. The circulating water is sprayed from the top and the flue gas flows upwards in the tower. The electric heat pump is indirectly connected with circulating water through the anti-corrosion and high-efficiency water-water plate heat exchanger. The return water of the heat-supply network enters the electric heat pump through the anti-corrosion and high-efficiency water-water plate heat exchanger and exchanges heat indirectly with the high-temperature circulating water. The electric heat pump uses the electric energy of the power plant as the driving power.
Abstract:
The invention relates to an HVAC apparatus, method, and system. Aspects of the invention include a supplemental heat source with an air handler unit for a conventional forced air heating and cooling system. The supplemental heat source in one example is a hydronic subsystem. It can be used alone or to supplement the forced air subsystem. Another aspect of the invention includes an air handling subsystem that has a housing that can be highly flexible in configuration and installation. The housing can support internal components, including a hydronic or other supplemental heat source with the forced air components. At least two sides of the housing can be configured for access for maintenance and repair. A control system can be designed to eliminate need for defrost cycle for forced air refrigeration-type subsystem and/or for better maintenance for comfort in the air conditioned space.
Abstract:
A heat pump system with a hybrid heating system is disclosed. The heat pump system includes a first housing comprising a heat exchanger, a compressor, and a fan. The heat pump system also includes a second housing that includes a supplemental heat source that is activated when the outside air falls below a certain temperature. The second housing includes a series of dampers that permit recirculation of the air passing through the first housing so that the supplemental heat source can provide heat to the recirculated air. The supplemental heat source increases the heating capacity of the heat pump system.
Abstract:
A controller is configured to set total stop in which operations of all of a plurality of water heaters are stopped when an abnormal condition of a fan or an abnormal condition in communication is sensed in any of the plurality of water heaters while at least one of the plurality of water heaters is operating. The controller is further configured not to set total stop when an abnormal condition of the fan or an abnormal condition in communication is sensed in at least one of the plurality of water heaters while a sensing element for sensing a backflow of an exhaust from an exhaust path assembly is connected to the controller.
Abstract:
The present invention relates to a combined fuel cell and boiler system, and comprising: a fuel cell portion for receiving supplied outside air and raw material gas and generating electricity through a catalyst reaction; and a boiler portion comprising a latent heat exchanger, which is connected to an exhaust gas pipe of the fuel cell portion, for collecting the latent heat of self-generated exhaust gas with the latent heat of exhaust gas from the fuel cell portion. The present invention can effectively increase the efficiency of a boiler by supplying the exhaust gas from the fuel cell to the latent heat exchanger in the boiler, so as to be heat-exchanged in the latent heat exchanger with the exhaust gas from the boiler and then discharged, and can simplify the composition by unifying exhaust gas pipes.
Abstract:
Control and handling of the temperature from water accumulator devices both open and closed such as swimming pools; with the capacity to extract heat energy from liquid water in a temperature range below 8° C. up to the freezing point; and the control and handling of temperatures in the premises and/or other devices located near the water accumulator device. A heat exchanger system has a first device having one or several water volumes in ponds, both open and closed, both natural and artificial such that it works as a heat battery; a primary heat exchanger device removable and/or fixed; a secondary device with a hydrothermal heat pump; a control device to handle flows and temperature; a tertiary device of closed water volume for sanitary water and/or a slab heating, and/or radiators, and/or solar collectors and/or devices where heat or cold and be irradiated.
Abstract:
Hydronic heating systems, controllers for such systems, and methods of using/operating same are disclosed herein. In one example embodiment, such a system includes at least one condensing boiler and at least one non-condensing boiler, and at least one controller configured for utilizing at least one PID control program to generate at least one signal for controlling firing rates of one or more of the boilers based upon sensed water temperature and temperature setpoint inputs. Depending upon the mode of operation, the at least one PID control program is a first PID control program dedicated to controlling only the at least one condensing boiler, or is a second PID control program dedicated to controlling only the at least one non-condensing boiler, or includes both the first and second PID control programs. Also, outside air temperature serves as a basis for generating the temperature setpoint inputs.
Abstract:
A recovery system of waste heat from flue gas. The system includes a first heat exchanger and a second exchanger. The first heat exchanger includes a heat absorption section, a heat release section, and a first pipeline. The second heat exchanger includes a second pipeline including an inlet header and an outlet header. The system further includes a third pipeline. The first heat exchanger is disposed at a relatively high temperature side of a flue, the second heat exchanger is disposed at a relatively low temperature side of the flue, and the first heat exchanger and the second heat exchanger are connected by the third pipeline. The heat absorption section and the heat release section are connected by the first pipeline to form a circulation loop; the heat absorption section is disposed in the flue; the heat release section is disposed in the third pipeline.