Abstract:
An inorganic structure body has a free-standing structure including a fibrous member and/or a shell. The fibrous member and/or the shell include a metal and/or an inorganic material and have a three-dimensionally continuous configuration. The free-standing structure may have a structure that is based on a nonwoven fabric or a porous membrane used as a substrate.
Abstract:
The invention concerns a multilayer material comprising at least: a support having a reflectance R higher than 80% for radiations of wavelengths higher than 5 μm, a selective layer comprising a combination of Vanadium oxides VO2 and VO2O2n+/−1, with n>1, said selective layer having an absorbance higher than 75% for radiations of wavelengths comprised between 0.4 and 2.5 μm, regardless of the temperature T, and having, for radiations of wavelengths comprised between 6 and 10 μm, a transmittance Tr such that: Tr>85% for T Tc. Application to the production of thermal solar panels having a low stagnation temperature and high performance.
Abstract:
The invention relates to solar thermal receiver for a solar thermal energy plant comprising a light absorber (11) comprising nanoparticles (13) in a host material (15) which is transparent in an absorbing range of the light absorber (11) and where the nanoparticles (13) ekhibit plasmonic resonances within the absorbing range of the light absorber (11), wherein the dispersion of the nanoparticles (13) in the host material is controlled in such a way that the mean distance between said nanoparticles (13) is lower than the wavelengths of light in the absorbing range of the light absorber (11) for generating near field radiation interactions between said nanoparticles (13). The size and the distribution of the nanoparticles (13) is chosen to obtain a cutoff wavelength, where light of higher wavelength than the cutoff wavelength is less absorbed than light at shorter wavelengths with respect to the cutoff wavelength reducing losses due to infrared radiation of the absorber.
Abstract:
The present invention pertains to a composite material for use as a selective solar absorber with a carrier layer (1), wherein at least the following layers are present on a side (B) of the carrier layer: A reflection layer (3), an absorber layer (5) and a dielectric and/or oxidic antireflection layer (7), wherein a layer (4) consisting of a nitride, a carbide or a carbonitride of a metal or of a mixture of two or more metals from subgroup IV, V or VI is located between absorber layer (5) and reflection layer (3), and an optically active layer (6) consisting of a metal compound with stoichiometric composition is located between absorber layer (5) and the dielectric antireflection layer (7).In addition, the present invention pertains to a composite material for use as a selective solar absorber with a carrier layer (1) consisting of aluminum or an aluminum alloy, wherein an optically active layer (8), which reduces the reflection of the uncoated carrier material by at least 5% at a specific wavelength in λ the wavelength range between 200 nm and 10 μm and preferably between 200 nm and 2,500 nm during irradiation at a specific incidence angle and reduces the reflection of the uncoated carrier material by no more than 20% and preferably by no more than 5% in the wavelength range between 2.5 μm, is located on a side (A) of the carrier layer.
Abstract:
The solar-thermal conversion member includes a β-FeSiz phase material. The solar-thermal conversion member exhibits a high absorptance for visible light at wavelengths of several hundred nm and a low absorptance for infrared light at wavelengths of several thousand nm and as a consequence efficiently absorbs visible light at wavelengths of several hundred nm and converts the same into heat and exhibits little thermal radiation due to thermal emission at temperatures of several hundred ° C. The solar-thermal conversion member can therefore efficiently absorb sunlight and provide heat and can prevent thermal radiation due to thermal emission.
Abstract:
A solar radiation absorber element for a thermal concentrating solar power plant is achieved by forming a selective coating on an outer surface of a substrate made from stainless steel, chosen from stainless steels presenting an aluminium content of more than 0.5% by weight. Formation of the selective coating includes a surface treatment step of the substrate, by polishing, and a heat treatment step of the substrate, in an oxidizing atmosphere, in a temperature range included between 550° C. and 650° C. The heat treatment in particular enables at least one intrinsically selective superficial thin layer to be formed on the outer surface of the substrate.
Abstract:
A heat receiver tube for absorbing solar energy and for transferring the absorbed solar energy to a heat transfer fluid is provided. The heat receiver tube includes a first partial surface, which is covered by a solar energy absorptive coating, and a second partial surface, which is substantially uncovered by the absorbing coating. Also provided is a parabolic trough collector with a parabolic mirror having a sunlight reflecting surface for concentrating sunlight in a focal line of the parabolic minor and a heat receiver tube which is arranged in the focal line of the parabolic mirror, wherein the heat receiver tube is arranged in the focal line such that the first partial surface with the solar absorptive coating is at least partially located opposite to the sunlight reflecting surface and the second partial surface at least partially averted to the sunlight reflecting surface.
Abstract:
Process for producing a solar absorber coating, which comprises the steps: coating of a substrate with a titanium precursor solution to produce a titanium dioxide layer by the sol-gel technique and heat treatment of the coated substrate to pyrolyse and crystallize the layer, characterized in that silver ions are added to the titanium precursor solution prior to coating in such an amount that the heat-treated layer has a proportion by mass of silver in the range from 10% to 80% and pyrolysis and crystallization of the layer are carried out with illumination of the layer with visible light.
Abstract:
The disclosure provides an improved solar selective multilayer coating having higher thermal stability and a process therefor. According to the disclosure, a tandem stack of three layers of TiAlN, TiAlON and Si3N4 is deposited on metal and non-metal substrates using a planar reactive magnetron sputtering process. The first two layers function as the absorber and the third antireflection layer further enhances the coating's absorptance. The solar selective coatings were annealed in air and vacuum to test the thermal stability at different temperatures and durations. The coatings deposited on copper substrates are stable in air up to a temperature of 625° C. and exhibit higher solar selectivity and these coatings also show no change in the absorptance and the emittance values even after vacuum annealing at 600° C. for 3 hours. The solar selective coatings exhibit high hardness, high oxidation resistance, chemical inertness and stable microstructure.
Abstract:
The present invention provides a solar absorptive material for a solar selective surface of an absorber of solar radiation. The solar absorptive material comprises a dispersed metallic material and a receiving the top surface boundary through which the solar radiation is received. Further, the solar absorptive material comprises a first region and a second region. The first region being located at a position closer to the receiving boundary than the second region and the first region has an average volume fraction of the dispersed metallic material that is larger than that of the second region.