Abstract:
A solar light (heat) absorption material which has an excellent solar light (heat) absorbing ability and a simple structure, and may be used as a low-cost and high-performance heat absorption/accumulation material. Also, a solar light (heat) absorption/control building component including the solar light (heat) absorption material that allows for easy change of its solar light (heat) absorption/control ability. The material includes particles dispersed into a liquid medium having a specific heat ranging from 0.4 to 1.4 cal/g/° C. and a melting point of 5° C. or lower. The dispersed particles have L*value of 30 or less as determined by the CIE-Lab color system (light source D65).
Abstract:
Solar power conversion system. The system includes a cavity formed within an enclosure having highly specularly reflecting in the IR spectrum inside walls, the enclosure having an opening to receive solar radiation. An absorber is positioned within the cavity for receiving the solar radiation resulting in heating of the absorber structure. In a preferred embodiment, the system further contains an energy conversion and storage devices thermally-linked to the absorber by heat conduction, convection, far-field or near-field thermal radiation.
Abstract:
A hybrid solar thermal collector is provided. The hybrid solar collector comprises a photovoltaic element to convert sunlight into electricity; and a solar thermal collector device comprising an absorber element to convert sunlight into heat; wherein the absorber element is immersed in a heat transfer fluid in use.
Abstract:
A hybrid solar thermal collector is provided. The hybrid solar collector comprises a photovoltaic element to convert sunlight into electricity; and a solar thermal collector device comprising an absorber element to convert sunlight into heat; wherein the absorber element is immersed in a heat transfer fluid in use.
Abstract:
Solar collector apparatus is described in which solar radiation is collected in a glazed cavity which may also include a transpired solar collector layer. Air warmed in the cavity may be used for space heating within buildings or diverted to heat management systems which facilitate, for example, heat storage. The glazing, particularly coated glazings, improve the performance of the devices by allowing solar energy to enter the cavity and preventing heat loss, and by negating the effect of ambient wind on the transpired solar collector layer.
Abstract:
The present invention relates to complexed nanoparticle materials including metal sub-nanoparticles and chalcopyrite nano cores. The metal sub-nanoparticles are distributed on the surfaces of chalcopyrite nano cores. The complexed nanoparticle materials have improved light absorption property because the surface plasmon resonance of metal nanoparticle to effectively convert light into thermal energy. The complexed nanoparticle materials further include dispersants which are attached on the surface of the complexed nanoparticle materials. A solvent mixture with similar polarity can be separated by adding the complexed nanoparticle materials with dispersants, and then irradiating sunlight through a focusing component to the solvent mixture.
Abstract:
This invention is a sunlight-to-heat converting member containing chromium silicide having an element ratio of Cr to Si from 1:1.6 to 1:4.7. This invention is also a sunlight-to-heat converting stack including a layer of the sunlight-to-heat converting member and a metal layer. This invention is also a sunlight-to-heat converting device including a light collecting part, either or both of a container and a flow path where sunlight is collected by the light collecting part, and a heating medium housed in either or both of the container and the flow path. The sunlight-to-heat converting member or the sunlight-to-heat converting stack is formed on a surface of either or both of the container and the flow path. The sunlight-to-heat converting member, the sunlight-to-heat converting stack, and the sunlight-to-heat converting device of this invention can convert light to heat efficiently.
Abstract:
A solar energy receiver comprises a panel, having a graphite core, a substantially gas tight housing encasing the graphite core, a heat exchanger comprising heat exchanger tubing, a heat exchanger inlet and a heat exchanger outlet. The heat exchanger tubing is at least partially embedded in the graphite core, and the heat exchanger inlet and the heat exchanger outlet extend through the housing. The housing is sealed around the heat exchanger inlet and the heat exchanger outlet. A method of manufacturing a solar energy receiver comprises: a) fabricating the heat exchanger in a serpentine coil shape; b) inserting grooved planks of graphite between individual coils of the heat exchanger to form the graphite core such that the coils are encompassed in the grooves; c) inserting the graphite and heat exchanger into the housing; and d) sealing the housing and sealing openings around the inlet and outlet where they pass through the housing.
Abstract:
A device and method of its production for a micro-channel thermal absorber to be used as a solar thermal collector, heat collector, or heat dissipater, extruded or continuously cast in one piece or in modular segments from a metal, plastic, or glass and assembled into panels of different structures seamlessly integrated into the envelope of a building as covering layers or structural elements. The micro-channel thermal absorber comprises an active plate, a back plate adjacent to the active plate, and a plurality of micro-channel walls arranged substantially perpendicular to the active plate and the back plate to define a plurality of fluid transport micro-channels configured to allow fluid flow there-along, wherein the micro-channel walls constitute supporting elements between the active plate and the back plate to provide structure.
Abstract:
The present invention relates to a solar energy collector (18) including an outer casing (20) having at least one aperture (22) disposed therein and an absorber (24) disposed within the outer casing (20). The aperture (22) is arranged to receive a beam (16) of solar radiation therethrough so that the beam (16) is incident on the absorber (24). The absorber (24) is arranged in use to absorb the energy of the beam of solar radiation and to thereby convert solar radiation to heat energy to heat a fluid communicated through the absorber (24). The absorber (24) is arranged to be moved by a moving means to promote even heating of the absorber (24).