Abstract:
The invention relates to a method for thermally stabilizing molten nitrate salt in thermal power plants, in particular solar power plants, having the steps of: a) providing molten nitrate salt, said nitrate salt being selected from alkali metal nitrates, alkaline earth metal nitrates, and mixtures of one or more alkali metal nitrates and alkaline earth metal nitrates, and transporting the molten nitrate salt in lines provided for this purpose and b) introducing a heat quantity ΔQpat into the molten salt at a defined position, wherein the heat quantity is provided in particular by means of solar energy. The invention is characterized in that prior to or after step b), a stabilization gas is supplied to the molten nitrate salt, said stabilization gas having oxygen, at least one nitric gas, and optionally nitrogen. The invention also relates to a device for carrying out the method.
Abstract:
A solar tower system is disclosed in which the heat transfer media is a molten salt at a temperature greater than 650° C. The components that carry or hold the molten salt are made from commercially available alloys made by Haynes International and sold under the designations HR-120® alloy, 230® alloy and 233™ alloy whose compositions are described herein. The molten salt preferably is MgCl2—KCl.
Abstract:
The invention relates to a method for exchanging heat contained at a fluid. A gas which is heated indirectly and emits infrared radiation is used as the fluid, said fluid being guided to the heat exchanger via an inlet and through art absorber chamber in the heat exchanger, and at least one surface, which absorbs the infrared radiation of the gas in order to use the heat of the gas, is provided in the absorber chamber. The mass flow and the temperature of she gas are additionally adjusted and the at least one surface which is absorbent for the heat exchange is designed such that the ratio Ψ of the heat flowing through the surface as a result of absorption to the total heat flowing through the surface is ≥0.6 during operation. Thus, a simpler and less expensive heat exchanger can be implemented.
Abstract:
A building-integrated solar energy system that concurrently provides space heating, space cooling, hot water, and electricity to commercial and residential buildings. The solar energy system comprises an evacuated closed-loop conduit network circulating a working fluid through a solar thermal collector and at least one heat usage device, wherein the effective entirety of the surfaces of the closed-loop conduit network are in contact with the working fluid such that phase change occurs whenever heat energy is added by the solar thermal collector or removed by a heat usage device. The solar energy system further comprises an impermeable outer housing enveloping the closed-loop conduit network and forming an evacuated space located between and defined by the outer surface of the closed-loop conduit network and the inner surface of the impermeable housing such that the working fluid is adiabatically isolated. As a result, the full surface contact and low-pressure isolation of the working fluid dramatically reduces temperature differentials and energy losses, allowing for highly efficient and cost-effective heat collection and distribution.
Abstract:
An apparatus for storing and/or converting solar energy into a mechanical and/or electrical energy product in a continuous manner, twenty-four hours a day. The apparatus includes an enclosed volume chamber having a wall formed from transparent material capable of allowing solar energy beams to enter into the chamber, the wall of the chamber having a reflective inner surface for trapping and reflecting the solar energy beams within the chamber, a heat absorbing member located within the chamber for receiving at least a portion of the solar energy beams, an inlet for feeding air into the chamber wherein the air becomes heated, an outlet for allowing the heated air to exit the chamber, and a conversion device for cooperating with the outlet for receiving the heated air and for converting the heated air to mechanical and/or electrical energy. The conversion device can be a plurality of thermophotovoltaic cells or a turbine.
Abstract:
The molten salt solar tower system 100 is provided for controlling molten salt temperature in a solar receiver 130 for effective operation of the system 100 while without degrading physical properties of molten salt. The system 100 includes two circuits, first 140 and second 150. The first circuit 140 is configured to supply relatively cold molten salt in the solar receiver 130 for heating, and the second circuit 150 is configured to supply a predetermined amount of the relatively cold molten salt in the first circuit 140, as and when the temperature of the relatively hot molten salt circulating through the solar receiver 130 exceeds a predetermined set temperature value thereof.
Abstract:
Two sensible thermal energy storage (STES) systems in multiple chambers containing molten eutectic salts have been devised for use at temperatures above 565° C. For the first type, the thermal energy of low specific heat of an immiscible gaseous heat transfer fluid (HTF) at temperatures above 900° C. is readily converted to dispatchable heat of high specific heat in the molten eutectic salt liquid layers operating at high temperatures, which can again produce a gaseous HTF at a constant temperature of 700° C. or higher for the lower electricity generation capacities. For the second type, the molten eutectic salt liquids are used as a thermal energy storage (TES) medium and also a HTF at temperatures above 700° C. for the higher electricity generation capacities. These STES systems provide an effective cushion against the disturbances of heat supply from the sun.
Abstract:
The disclosed invention relates to solar-thermal receiver tubes for heating high-temperature fluids such as molten salts and oils, such as those used in conjunction with trough reflectors or concentric concentrators. The disclosed invention utilizes fused silica receiver tube assemblies that provide optical absorption by way of optically-absorbing media that is imbedded within the thermal transfer fluid, preferably comprising inorganic “dyes” that comprise pulverized thin film coatings or dissolved materials that are specifically designed for maximizing optical absorption. Alternatively, the chemistry of the transfer fluid can be modified to increase optical absorption, or the optically absorbing media may comprise fine powders with density preferably similar to the thermal transfer fluid, such as fine graphite powder; or, in another preferred embodiment, absorbing means within the heat transfer fluid comprise a solid absorbing element disposed along the central axis of the receiver tube's interior.
Abstract:
The composite material comprises nitrate and chloride anion inorganic salts which may also comprise sulphates, carbonates and/or nitrites and organic and inorganic nanoparticles, such as graphene, and cations of the alkaline, earth-alkaline, earth, carbon and/or amphigenic chemical groups. Said formulations have chemical and physical characteristics, such as the heat capacity, thermal stability and thermal conductivity thereof which make them optimum for being used as an alternative to the commercially available binary mixture in concentrating solar power plants.
Abstract:
A solar energy reflector (1) comprises a mirror (5) with no copper layer laminated to a supporting sheet (7) by means of a bonding material (6). The edges of the mirror (5) are provided, at least on a portion forming the major part of their height and closest to the metallic sheet, with an edge protection (8) made of a material comprising silicone, polyurethane and/or acrylic and the material forming the edge protection (8) is different from the bonding material (6).