Abstract:
An oil-lubricated bearing device comprises: a rolling bearing including an inner ring, an outer ring, rolling bodies, and a holder; a tapered member; a lubricant storage disposed on a side provided with the tapered member with respect to the inner ring; and a contact portion. The holder includes pockets each formed with outer and inner ring side openings and configured to hold a corresponding one of the rolling bodies, a lubricant scraping portion formed at an inner peripheral surface of each of the pockets and configured to scrape lubricant adhering to a surface of each of the rolling body, and a second inclined surface formed at an outer peripheral surface portion of the holder adjacent to the outer ring side opening and rising with a slope toward the lubricant storage.
Abstract:
A centrifugal blood pump for circulating blood is provided, wherein an impeller makes no contact at all with a housing and a rotating shaft and moves in a rotating manner with the impeller in a stably levitating state. Also provided is a blood pump in which the impeller rotates at high speed even when the blood pump is reduced in scale. The blood pump contains a magnet of enhanced magnetic force at the inside of a housing and at an outer peripheral surface of an impeller and providing a fixed-interval spacing on the periphery of a bearing section makes it possible to ensure a state where no contact at all is made between the housing, a shaft, and the impeller, and makes it possible to cause the impeller to rotate stably over a long period of time.
Abstract:
A magnetic thrust bearing for use in a device for relatively free rotational movement of a first part relative to a second part includes axial and laterally spaced magnets. Each magnet has a magnetic field of force with opposing poles and a transition section which converges to a transition line. Axial magnets are spaced on an axis of the first part of the device and lateral magnets are arranged on the second part of the device. The lateral magnets operating in units, having paired lateral magnets positioned on opposite sides of the axis with each of the paired magnets having an equal length and equal gap or space from the axis. Axial magnets have an alternating polar orientation such that the nearest magnetic poles of adjacent axial magnets are repelling, and the distance between transition lines of the axial magnets is substantially equal to the length of the lateral magnets. Accordingly, the magnetic field of force of each lateral magnetic unit is perpendicular and attracting to the repelling fields of force between adjacent axial magnets for lateral displacement of the first part relative to the second part by a fixed gap, so that, with this arrangement, the permanent-magnet bearing enables non-contact, relative motion between the two parts of the device using both attractive and repelling forces generated by magnets.
Abstract:
Apparatus and methods for providing a pre-determined axial thrust force profile for use in a rotating machine that includes a magnetically permeable rotor with first and second surfaces and a generally perpendicular shaft is disclosed. One or more bearings support the shaft and a coil induces flux in the rotor. First and second pole pieces disposed adjacent to the first and second surfaces define first and second gaps. A series magnetic circuit including the pole pieces, the gaps and the rotor carries flux generated by current flowing in the coil. Pole pieces and gaps provide substantially similar reluctance in both gaps. Magnetic saturation characteristics of a series magnetic circuit may provide a pre-determined axial force profile as a function of coil current. A first magnetic saturation characteristic may provide a maximum axial force at a first current magnitude. A second magnetic saturation characteristic may provide a lower axial force at a current greater than the first current. The saturation characteristic may be formed by configuring the geometry and dimensions of the poles. The axial force profile may be formed to reduce the net axial thrust load on the bearings.
Abstract:
A magnetic thrust bearing for use in a device for relatively free rotational movement of a first part relative to a second part includes axial and laterally spaced magnets. Each magnet has a magnetic field of force with opposing poles and a transition section which converges to a transition line. Axial magnets are spaced on an axis of the first part of the device and lateral magnets are arranged on the second part of the device. The lateral magnets operating in units, having paired lateral magnets positioned on opposite sides of the axis with each of the paired magnets having an equal length and equal gap or space from the axis. Axial magnets have an alternating polar orientation such that the nearest magnetic poles of adjacent axial magnets are repelling, and the distance between transition lines of the axial magnets is substantially equal to the length of the lateral magnets. Accordingly, the magnetic field of force of each lateral magnetic unit is perpendicular and attracting to the repelling fields of force between adjacent axial magnets for lateral displacement of the first part relative to the second part by a fixed gap, so that, with this arrangement, the permanent-magnet bearing enables non-contact, relative motion between the two parts of the device using both attractive and repelling forces generated by magnets.
Abstract:
An axial now blood pump includes a pump housing and first and second stator permanent magnets fixed to the pump housing. A rotor assembly is disposed within the pump housing and includes first and second rotor permanent magnets. The first fixed permanent magnet may be axially offset from the first rotor permanent magnet and the second fixed permanent magnet may be axially offset from the second rotor permanent magnet. The permanent magnets act as passive radial bearings with maintain the rotor coaxial with the housing, and also exert axial forces on the first and second rotor permanent magnets to urge the rotor towards an equilibrium axial position relative to the housing. The rotor may be suspended and positioned within the housing solely by operation of the permanent magnets.
Abstract:
Method for orienting a timepiece component made of magnetic/electrostatic material.On both sends of this component, two magnetic/electrostatic fields each attract it onto a pole piece, with an unbalance in the intensity of said fields around said component, in order to create a differential in the forces thereon and to press one of said ends onto a contact surface of one of said pole pieces, and to hold the other end at a distance from the other pole piece.Magnetic/electrostatic pivot including such a component with two ends.It includes a guide device with surfaces of two pole pieces each attracted by a magnetic/electrostatic field transmitted by one of said ends, or generating a magnetic/electrostatic field attracting one of said ends, the magnetic/electrostatic forces exerted on said two ends are of different intensity, in order to attract only one end into contact with only one of said pole piece surfaces.
Abstract:
A magnetic floating paper towel holder consists of a magnetic stand that has magnetic blocks installed at four corners and four sides and a magnetic paper towel holder which has two magnetic wheels and one magnetic connecting tube. The magnetic polarity of the stand magnetic blocks, the magnetic wheels and the magnetic connecting tube is properly arranged to create a repelling force against each other between the stand magnetic blocks and the magnetic paper towel holder. Therefore, the magnetic paper towel holder floats in air when it is placed on top and in the middle of the magnetic stand.
Abstract:
An electric machine having a hybrid bearing for the purpose of supporting a rotor with respect to a stator, the hybrid bearing consisting of a radial bearing, taking the form of a fluid dynamic bearing, and an axial bearing that is made up of magnetic elements, wherein the magnetic elements comprise at least one permanent magnet and one flux guide element that are disposed so as to be located opposite each other in a radial direction.
Abstract:
One or more permanent magnets, or one or more permanent magnet arrays are used to produce shear force levitation. A primary application of shear force levitators is a levitated ring energy storage device. Such a levitated ring energy storage device includes a round support structure having a first magnetic levitator or levitator array encircling its outer periphery, and a ring encircling the support structure and having a second magnetic levitator or levitator array encircling its inner periphery, such that the first and second magnetic levitators (or levitator arrays) interact to produce a vertical force that levitates the ring.