Abstract:
A handheld work apparatus has a combustion engine, a pull-rope starter, and a stop button for switching off the combustion engine. A throttle element is arranged in an intake channel of the combustion engine. The work apparatus has a control device for activating a spark plug and a fuel valve. The control device has a starting mode wherein the combustion engine can be started via the pull-rope starter, and an operating mode wherein the operator can adjust the throttle to vary the rotational speed (n) of the combustion engine. The operating and starting mode differ in terms of the control of ignition time and fuel quantity to be supplied. When the combustion engine is started from the switched-off state, the control device is automatically in starting mode, such that after the combustion engine is switched off, the work apparatus is immediately ready for restarting via the pull-rope starter.
Abstract:
A method is for starting a combustion engine having a pull-rope starter. A fuel/air mixture is fed to the engine via an intake channel. The mixture is ignited by a spark plug. The combustion drives the piston downward and drives a crankshaft rotationally. The fuel system has a fuel channel opening into the intake channel. An electric fuel valve is open in its currentless state and closes a fuel channel only when an operating voltage is applied. An electronic control unit actuates the fuel valve and triggers an ignition spark and is utilized by a generator to supply energy to the control unit, the fuel valve and the ignition device. To prevent excessive enriching of the fuel/air mixture during starting, the energy, which is generated at the beginning of the rotation of the crankshaft, is used to first close the fuel valve before the control unit triggers an ignition spark.
Abstract:
A diesel engine of the present invention includes a turbocharger including: a turbine provided on an exhaust passage; a compressor provided on an intake passage; and a plurality of nozzle vanes provided around the turbine to control a flow velocity of an exhaust gas colliding with the turbine, angles of the nozzle vanes being changeable. In a case where a ratio of a volume of a combustion chamber when the intake valve is closed to a volume of the combustion chamber when a piston is located at a top dead center is denoted by an effective compression ratio εe, and a total displacement of the engine is denoted by V (L), the effective compression ratio εe is set to satisfy Formula (1) “−0.67×V+15.2≦εe≦14.8.”
Abstract:
A starting system for a combustion engine including a carburetor with a throttle valve moveable between idle and wide open positions, a throttle control to control movement of the throttle valve during normal operation of the engine, and a linkage between the throttle control and the throttle valve. The starting system includes a recoil pulley, a pull-cord to rotate the recoil pulley, an actuator moveable in response to rotation of the recoil pulley, and a throttle override device. The throttle override device has a first control member moveable from a first position to a second position in response to movement of the actuator, and a second control member moveable in response to movement of the first control member from a first to a second position. The second control member is operably associated with the linkage to prevent the throttle valve from being in its wide open position when the second control member is in its second position.
Abstract:
A carburetor control system includes: a governor device that is coupled to a throttle lever, opens a throttle valve when an operation of an engine is stopped, and opens or closes the throttle valve in accordance with a rotational number of the engine when the engine is in operation; a choke return spring urging a choke lever in a direction to close a choke valve; and an automatic choke device opening the choke valve in accordance with an increase in temperature of the engine. In the carburetor control system, the throttle lever is provided with a drive arm pivoting the choke lever, during a cold operation of the engine, to a position where the choke valve is at an intermediate degree of opening in operative connection with the throttle lever being pivoted by the governor device to a position where the throttle valve is at a degree of opening for idling or a position in a vicinity thereof. Accordingly, it is possible to mechanically open the choke valve to a predetermined intermediate degree of opening, when the engine is in a cold idling state, in operative connection with the throttle valve, so as to be capable of ensuring a fuel-efficient and stable idling state.
Abstract:
In a hybrid vehicle using an engine as one of power sources, an ECU obtains catalyst temperature. The ECU performs a catalyst warm-up operation if the catalyst temperature is lower than first catalyst temperature necessary for exhaust gas purification during a continuous operation of the engine. The ECU performs intermittency prohibition operation for prohibiting an intermittent operation of the engine if the catalyst temperature is between the first catalyst temperature and second catalyst temperature necessary for the exhaust gas purification at starting of the engine. The ECU performs a normal operation for allowing the intermittent operation of the engine if the catalyst temperature is higher than the second catalyst temperature. Thus, deterioration of fuel consumption due to catalyst warm-up is inhibited while inhibiting deterioration of emission in the hybrid vehicle.
Abstract:
A method of controlling a choke valve of an engine with a controller is disclosed. Also disclosed is an automatic choke performing the method, an engine having the automatic choke, and an apparatus having the engine. The controller includes an electronic circuit, such as a programmable device, and is coupled to a temperature sensor and a motor. The method includes determining a temperature value using the temperature sensor, determining a time period to hold the choke valve in a first position, keeping the choke valve at the first position for the time period, moving the choke valve from the first position toward a second position using the motor, determining a count to hold the choke valve, keeping the choke valve at the second position for the count, and moving the choke valve from the second position toward a fully open position.
Abstract:
A pull-cord start system has a recoil pulley coupled to a crankshaft of a combustion engine and a pull-cord wound about the recoil pulley which is pulled by an end user to rotate the recoil pulley and thereby start the engine. A throttle override device of the pull-cord start system has a shuttle coupled to the pull-cord for movement from a biased rest position to an active position when the pull-cord is being pulled by an end user. A linkage of the throttle override device which is preferably a Bowden cable extends between a throttle control and a throttle valve of a carburetor and is associated with the shuttle so that actuation of the throttle control when the shuttle is in the active position will not open the throttle valve which preferably is biased to an idle position because movement of the shuttle to the active position produces slack in the linkage.
Abstract:
The invention relates to a method for switching off an internal combustion engine and to an internal combustion engine suitable for carrying out said method. Here, after a switching off command for an internal combustion engine, the throttle valve in the air intake system is again opened to enable a relatively large amount of fresh air to be sucked into the combustion chambers of the internal combustion engine. This considerably increases the gas forces in the combustion chambers while the engine slows to a standstill, so that the internal combustion engine can be switched off in a controlled manner. At the same time, products of combustion, which may possibly still be present, are removed from the combustion chambers of the internal combustion engine. As a result, the preconditions for directly starting the internal combustion engine without a starter are created.
Abstract:
An engine fuel control device includes an idle speed control valve that is disposed in a bypass passage that bypasses a throttle valve, a starting phase determination means that determines whether the engine is in a pre-start phase or a post-start phase, a first opening setting means that sets the opening of the idle speed control valve before starting, a second opening setting means that sets the opening of the idle speed control valve after starting, and a target opening setting means that sets at least one target opening for the idle speed control valve opening when the engine shifts from the pre-start phase to the post-start phase. While the engine is being started, the fuel control device shifts the ISC valve opening from the opening before the complete explosion is determined to the target opening after the complete explosion and eventually to the opening after the complete explosion.