Abstract:
A system and method for supplying fuel to an engine is disclosed. In one example, a first controller supplies injector commands to a second controller via an asynchronous serial communication bus. The system may reduce the complexity of supplying two or more fuels to an engine.
Abstract:
A power system for a work vehicle, includes an intake arrangement configured to intake charge air; a fuel arrangement configured to provide at least one fuel; a compression ignition engine including a plurality of piston-cylinder sets configured to receive, ignite, and combust the at least one fuel from the fuel arrangement and intake gas that includes the charge air from the intake arrangement to generate mechanical power and exhaust gas; at least one compression ignition assistance apparatus associated with at least one of the intake arrangement and the fuel arrangement; and a controller coupled to command the compression ignition assistance apparatus, the intake arrangement, and the fuel arrangement such that, in an enhancement mode, the controller commands activation of the compression ignition assistance apparatus; and in a nominal mode, the controller commands or maintains deactivation of the compression ignition assistance apparatus.
Abstract:
Operating a gaseous fuel engine system includes conveying hydrogen fuel and hydrocarbon fuel into a cylinder in a gaseous fuel engine for combustion. Operating a gaseous fuel engine system further includes receiving an increased engine power output request, boosting a power output of the gaseous fuel engine by varying a ratio of the hydrogen fuel and the hydrocarbon fuel combusted in the cylinder, and varying an in-cylinder combustion parameter based on the varying a ratio. Perturbation to a performance profile of the gaseous fuel engine is thereby limited. Related apparatus and control logic is also disclosed.
Abstract:
Operating a gaseous fuel engine system includes conveying hydrogen fuel and hydrocarbon fuel into a cylinder in a gaseous fuel engine for combustion. Operating a gaseous fuel engine system further includes receiving an increased engine power output request, boosting a power output of the gaseous fuel engine by varying a ratio of the hydrogen fuel and the hydrocarbon fuel combusted in the cylinder, and varying an in-cylinder combustion parameter based on the varying a ratio. Perturbation to a performance profile of the gaseous fuel engine is thereby limited. Related apparatus and control logic is also disclosed.
Abstract:
A power system for a work vehicle includes an intake arrangement for intake of charge air; a fuel arrangement including a fuel tank storing a low carbon fuel blend; an engine configured to receive, ignite, and combust a mixture of the charge air and the low carbon fuel blend; an exhaust arrangement positioned downstream to receive exhaust from the engine during combustion of the low carbon fuel blend; at least one exhaust sensor positioned at or proximate to the exhaust arrangement; and a controller. The controller is configured to receive an initial indication of a composition of the low carbon fuel blend; implement operating parameters with feedforward adjustments based on the initial indication of the composition of the low carbon fuel blend; receive feedback from the at least one exhaust sensor regarding operational conditions; and adjust the operating parameters based on the feedback.
Abstract:
Methods and systems are provided for mitigating loss of engine torque due to cavitation in a fuel pump. One example approach is adjusting engine operation or fuel pump operation based on ambient conditions and a measured engine torque being lower than a desired engine torque after a pre-determined duration. The ambient conditions may include one or more of ambient temperature being higher than a temperature threshold, barometric pressure lower than a threshold pressure, and fuel volatility higher than a threshold volatility.
Abstract:
A method of controlling fuel injection in a dual fuel engine system includes determining, with a first controller, a diesel injection pulse indicative of a first amount of diesel fuel to be injected into a combustion chamber of the engine and a first timing at which the first amount of diesel fuel is to be injected. The method also includes determining, with a second controller, a combined injection pulse based on the diesel injection pulse. The method further includes injecting the second amount of diesel fuel and the third amount of natural gas into the combustion chamber in accordance with the combined injection pulse. In such a method, injection in accordance with the combined injection pulse results in a combustion event characterized by a second combustion characteristic substantially equal to a first combustion characteristic associated with the diesel injection pulse.
Abstract:
Methods and systems are provided for mitigating loss of engine torque due to cavitation in a fuel pump. One example approach is adjusting engine operation or fuel pump operation based on ambient conditions and a measured engine torque being lower than a desired engine torque after a pre-determined duration. The ambient conditions may include one or more of ambient temperature being higher than a temperature threshold, barometric pressure lower than a threshold pressure, and fuel volatility higher than a threshold volatility.
Abstract:
A device capable of supplying an internal combustion engine with fuel while improving the utilization rate of vaporized fuel. A temporary transition from a third state (primary recovery path FL1: closed, secondary recovery path FL2: closed, second vaporized fuel path VL2: closed, condenser 30: decompressed) to a fourth state (primary recovery path FL1: closed, secondary recovery path FL2: closed, second vaporized fuel path VL2: open, condenser 30: decompressed) is achieved. This temporarily increases an internal air pressure P of a condenser 30, and the kinetic energy of a vaporized fuel V leaked out of a first fuel tank 40 through the second vaporized fuel path VL2 is able to sweep away a first fuel F1 in a liquid state accumulated in a vacuum pump 36 to the first fuel tank 40.
Abstract:
A method of controlling fuel injection in a dual fuel engine system includes determining, with a first controller, a diesel injection pulse indicative of a first amount of diesel fuel to be injected into a combustion chamber of the engine and a first timing at which the first amount of diesel fuel is to be injected. The method also includes determining, with a second controller, a combined injection pulse based on the diesel injection pulse. The method further includes injecting the second amount of diesel fuel and the third amount of natural gas into the combustion chamber in accordance with the combined injection pulse. In such a method, injection in accordance with the combined injection pulse results in a combustion event characterized by a second combustion characteristic substantially equal to a first combustion characteristic associated with the diesel injection pulse.