Abstract:
A control device includes first and second level ratio calculators and an adjuster. The first level ratio calculator calculates a first level ratio of an amount of a first fuel stored in a first tank to a full tank capacity of the first tank. The second level ratio calculator calculates a second level ratio of an amount of a second fuel stored in a second tank to a full tank capacity of the second tank. An octane number of the second fuel is higher than an octane number of the first fuel. The adjuster adjusts a first fuel ratio of the first fuel in a supplied fuel which is supplied to an internal combustion engine and a second fuel ratio of the second fuel in the supplied fuel such that a deviation ratio of the first level ratio and the second level ratio is within a predetermined range.
Abstract:
A device capable of supplying an internal combustion engine 60 with a first fuel F1 of a high octane number fuel, and a second fuel F2 of a low octane number fuel or a raw fuel F0. The device is equipped with a cooling medium circulating path LL configured to perform heat exchange between a cooling medium for cooling the internal combustion engine 60 and a separator 20. The device adjusts a flow rate of the cooling medium in the cooling medium circulating path LL, so that a separator temperature T1 is contained in a predetermined temperature range, according to T1, a raw fuel temperature T2 and a cooling medium temperature T3.
Abstract:
A fuel supply apparatus includes a material fuel tank, a separator, a condenser, a first fuel tank, and a first storage device. The material fuel tank is to store a material fuel. The separator is to separate the material fuel supplied from the material fuel tank into a first fuel and a second fuel. The condenser is to condense the first fuel supplied from the separator through a primary-order recovery passage. The first fuel tank is to store the first fuel supplied from the condenser through a secondary-order recovery passage. The first storage device is provided in the secondary-order recovery passage to temporarily store the first fuel supplied from the condenser.
Abstract:
A method for controlling an internal-combustion engine includes detecting knocking in the internal-combustion engine. An EGR gas quantity of EGR gas is increased in a case where the knocking is detected. A part of exhaust gas is circulated into an intake passage as the EGR gas. A fuel octane number of fuel supplied to a cylinder is increased in the case. The fuel octane number is decreased after the fuel octane number has been increased. The EGR gas quantity is maintained so as to prevent the knocking after the EGR gas quantity has been increased.
Abstract:
A control apparatus for an internal combustion engine, includes circuitry. The circuitry is configured to control a ratio of an amount of low octane number fuel to be supplied to a cylinder to a total amount of the low octane number fuel and a high octane number fuel to be supplied to the cylinder in order to control an overall octane number of fuel to be supplied to the cylinder. The high octane number fuel has a second octane number higher than a first octane number of the low octane number fuel. The circuitry is configured to calculate a maximum octane number of the fuel to be supplied into the cylinder. The circuitry is configured to restrict a power generated by the internal combustion engine based on the maximum octane number.
Abstract:
A device capable of supplying an internal combustion engine 60 with a first fuel F1 of a high octane number fuel, and a second fuel F2 of a low octane number fuel or a raw fuel F0. The device is equipped with a cooling medium circulating path LL configured to perform heat exchange between a cooling medium for cooling the internal combustion engine 60 and a separator 20. The device adjusts a flow rate of the cooling medium in the cooling medium circulating path LL, so that a separator temperature T1 is contained in a predetermined temperature range, according to T1, a raw fuel temperature T2 and a cooling medium temperature T3.
Abstract:
A device capable of supplying an internal combustion engine with fuel while improving the utilization rate of vaporized fuel. A temporary transition from a third state (primary recovery path FL1: closed, secondary recovery path FL2: closed, second vaporized fuel path VL2: closed, condenser 30: decompressed) to a fourth state (primary recovery path FL1: closed, secondary recovery path FL2: closed, second vaporized fuel path VL2: open, condenser 30: decompressed) is achieved. This temporarily increases an internal air pressure P of a condenser 30, and the kinetic energy of a vaporized fuel V leaked out of a first fuel tank 40 through the second vaporized fuel path VL2 is able to sweep away a first fuel F1 in a liquid state accumulated in a vacuum pump 36 to the first fuel tank 40.
Abstract:
A fuel supply apparatus includes a raw-fuel tank, a separator, a heater, a cooler, and an adjustment mechanism. The raw-fuel tank is to store raw fuel. The separator is to separate the raw fuel into a first fuel and a second fuel. The adjustment mechanism is to perform adjustment of at least one of a first factor, a second factor, and a third factor so that a first temperature of the separator is set to within a predetermined first temperature range or is set to a first target temperature. The first factor includes a flow rate of the raw fuel. The second factor includes an amount by which the raw fuel is heated in the heater. The third factor includes an amount by which the second fuel is cooled in the cooler.