Abstract:
An exhaust control device for engine configures an exhaust system by joining exhaust pipes at a collecting pipe. The exhaust pipes are coupled to a plurality of respective cylinders. At least two types of exhaust valves are configured to perform an exhaust control at different parts in the exhaust system. The exhaust control device for engine includes first exhaust valves, a second exhaust valve, and an actuator. The first exhaust valves are mounted to a plurality of communicating pipes and communicating the predetermined exhaust pipes. The second exhaust valve is mounted to the collecting pipe. The actuator is configured to drive to open and close the second exhaust valve. The first exhaust valves are configured to be driven to open and close corresponding to an actuating region of the second exhaust valve.
Abstract:
An exhaust valve assembly has a valve actuator, a first valve part (FVP) operatively connected to the actuator, a second valve part (SVP), and at least one auxiliary valve operatively connected to the second valve part. When the actuator is in a first position, the FVP is in a fourth position, the SVP is in a seventh position and the at least one auxiliary valve is in a ninth position. When the actuator is in a second position, the FVP is in a fifth position, the SVP is in the seventh position and the at least one auxiliary valve is in the ninth position. When the actuator is in a third position, the FVP is in a sixth position, the SVP is in an eighth position and the at least one auxiliary valve is in a tenth position. The second position is intermediate the first and third positions.
Abstract:
An intake and exhaust tuning system is disclosed. The exhaust system includes a collector slidably mounted within the exhaust fluid path and adjustable by an actuator to change the fluid path length between the collector and the exhaust ports of an engine. The intake tuning system includes a sliding member engaging parallel straight sections of tubes forming the intake system. The position of the sliding member is adjusted to change the length of the intake fluid path. Sealing members suitable for use in the intake and exhaust tuning systems are also disclosed.
Abstract:
An intake and exhaust tuning system is disclosed. The exhaust system includes a collector slidably mounted within the exhaust fluid path and adjustable by an actuator to change the fluid path length between the collector and the exhaust ports of an engine. The intake tuning system includes a sliding member engaging parallel straight sections of tubes forming the intake system. The position of the sliding member is adjusted to change the length of the intake fluid path. Sealing members suitable for use in the intake and exhaust tuning systems are also disclosed.
Abstract:
An engine output control system includes an engine ECU having a fundamental ignition timing map, a fundamental fuel injection quantity map, a target throttle angle determination unit for determining a target throttle angle of an exhaust control valve, an exhaust control valve diagnosis unit for diagnosing operation of the exhaust control valve, an ignition timing map to be used during an abnormality for determining fundamental ignition timing when the exhaust control valve operates abnormally, and an abnormal fuel injection thinning-out table for determining a reduced rate of fuel injection when the exhaust control valve has been diagnosed as abnormal. The exhaust control valve driving unit supplies a driving current to an actuator in such a manner that the target throttle angle notified by the engine ECU coincides with actual valve throttle angle. The system is capable of obtaining sufficient traveling performance even when an exhaust control valve has is operating abnormally.
Abstract:
An exhaust system for a multi-cylinder engine can include a plurality of exhaust pipes with first upstream ends connected to exhaust openings of a multi-cylinder engine, and a collecting pipe connected to the second downstream ends of the exhaust pipes for collecting exhaust introduced from the exhaust pipes and directing it to a silencer. The collecting pipe has a front-end portion communicated to exhaust passages of the exhaust pipes, a middle portion for collecting the exhaust introduced from the front-end portion, and a rear-end portion for further collecting the exhaust introduced from the middle portion. The middle portion is provided with exhaust control means for controlling the area of the exhaust passages in accordance with engine speed.
Abstract:
An apparatus for modifying an exhaust stream of a diesel engine is provided. The apparatus includes a muffler arrangement having an exhaust inlet and an exhaust outlet in construct and arrange for sound attenuation therein. The apparatus also includes a catalytic converter arrangement positioned within the muffler arrangement between the exhaust inlet and exhaust outlet. During operation, the exhaust flow is directed both through the muffler arrangement and the catalytic converter arrangement, to advantage.
Abstract:
The invention is an adjustable exhaust system and an adjustable insert for an exhaust system. The exhaust system includes a header flange, at least one conduit coupled to the header flange, a collector coupled to the conduit, and an adjustable insert for tuning engine performance.
Abstract:
The invention relates to an internal combustion engine with at least one control element (6, 14) for variation of the flow cross-section of a charge exchange passage, which control element (6, 14) is automatically adjustable in accordance with the engine mode by means of an actuating member (8) and a connecting element (9). In order to permit automatic adjustment of the control element (6, 14) in dependence of engine speed and load in a simple manner, it is proposed that the internal combustion engine be flexibly supported in a frame (1), and that the actuating member (8) of the control element (6, 14) be supported via the connecting element (9) on at least one pivot (10) fixed in the frame (1), such that the control element (6, 14) can adjust itself with increasing torque, due to the relative movement between engine (2) and frame (1) resulting from the torque of the combustion engine, thereby increasing the flow cross-section of the charge exchange passage while varying the beginning of the charge changing process.
Abstract:
The intake and exhaust control systems are operable in varying modes, according to the engine speed, by a single actuator. The intake control system includes an intake valve that allows a variable amount of air into an air cleaner depending on vehicle speed. The exhaust control system includes an exhaust control valve, and a primary and a secondary exhaust purifying system located downstream of the exhaust control valve. The flow into the exhaust purifying systems may also be controlled according to engine speed.