Abstract:
An engine assembly including an internal combustion engine, an impulse turbine, and an exhaust pipe providing fluid communication between the exhaust port of the internal combustion engine and the flow path of the turbine. The exhaust pipe terminates in a nozzle. A ratio Vp/Vd between the pipe volume Vp and the displacement volume Vd of the internal combustion engine is at most 1.5. A minimum value of a cross-sectional area of the exhaust pipe is defined at the nozzle. In one embodiment, a ratio An/Ae between the minimum cross-sectional area An and the cross-sectional area Ae of the exhaust port of the internal combustion engine is at least 0.2. A method of compounding at least one internal combustion engine is also discussed.
Abstract:
A two-phase expansion device (106) capable of maximizing the amount of movement produced by a two-phase flow. The two-phase expansion device (106) includes at least: one dispenser (105) for dispensing the fluid to a plurality of two-phase expansion nozzles (60); a plurality of adjacent two-phase expansion nozzles (60) with substantially parallel axes, each two-phase expansion nozzle (60) including sequentially at least one diffuser (65), one neck (66), and one tube (67), the two-phase expansion nozzles (60) being arranged to each receive a portion of the flow from the hot source; and elements for supporting the plurality of two-phase expansion nozzles (60) and including elements for sealably separating the two-phase expansion nozzles (60).
Abstract:
Each spindle system turbine blade has front and rear surfaces relative to the rotational direction. The rear surface is a recessed columnar surface with a radius of curvature R1, while the front surface is a smooth continuous surface having a projecting columnar surface with a radius of curvature R2 larger than R1 and a flat surface between which a projecting columnar surface with a radius of curvature R3 larger than R1 is arranged. Among the three surfaces, the projecting columnar surface is at an inlet side of a channel straddling the projecting columnar surface, while the flat surface is at the outlet side. A space sandwiched between a facing front surface and rear surface of adjoining turbine blades forms a gas channel. Gas ejected from a nozzle flows in from an inlet in a direction along the arc-shaped curve of the recessed columnar surface and out an outlet.
Abstract:
Several embodiments of a wobble plate motor include a disc mounted on a bent shaft. Driving the wobble plate so it revolves on a flat base causes the bent shaft to rotate and drive a generator or other work consumer. The wobble plate may be driven by a fluid stream impinging on the plate or by a blade assembly in a path of fluid movement. In one embodiment of a bladed motor, a shroud may direct the fluid stream so it more efficiently cooperates with the blade assembly.
Abstract:
A fuel cell system includes at least one fuel cell having an anode chamber, a cathode chamber, a hydrogen pressure reservoir, a recirculation line connecting an outlet of the anode chamber to an inlet of the anode chamber, a recirculation conveyor with a compressor wheel in the region of the recirculation line, and a turbine for expanding the hydrogen that is under pressure before entry into the anode chamber. The recirculation conveyor is driven at least partially by the turbine. The turbine and the compressor wheel are formed in one component.
Abstract:
A gas turbine engine with a compressor rotor having compressor impulse blades that delivers gas at supersonic conditions to a stator. The stator includes a one or more aerodynamic ducts that each have a converging portion and a diverging portion for deceleration of the selected gas to subsonic conditions and to deliver a high pressure oxidant containing gas to flameholders. The flameholders may be provided as trapped vortex combustors, for combustion of a fuel to produce hot pressurized combustion gases. The hot pressurized combustion gases are choked before passing out of an aerodynamic duct to a turbine. Work is recovered in a turbine by expanding the combustion gases through impulse blades. By balancing the axial loading on compressor impulse blades and turbine impulse blades, asymmetrical thrust is minimized or avoided.
Abstract:
A rotor for a radial flow turbine has an impulse chamber (51) having an inlet defined in a circumferential surface of the rotor and a reaction chamber (62) having an outlet defined in the circumferential surface of the rotor. The impulse chamber is in fluid communication with the reaction chamber, and the reaction chamber outlet is axially displaced from the impulse chamber inlet.
Abstract:
A trapped vortex combustor. The trapped vortex combustor is configured for receiving a lean premixed gaseous fuel and oxidant stream, where the fuel includes hydrogen gas. The trapped vortex combustor is configured to receive the lean premixed fuel and oxidant stream at a velocity which significantly exceeds combustion flame speed in a selected lean premixed fuel and oxidant mixture. The combustor is configured to operate at relatively high bulk fluid velocities while maintaining stable combustion, and low NOx emissions. The combustor is useful in gas turbines in a process of burning synfuels, as it offers the opportunity to avoid use of diluent gas to reduce combustion temperatures. The combustor also offers the possibility of avoiding the use of selected catalytic reaction units for removal of oxides of nitrogen from combustion gases exiting a gas turbine.
Abstract:
A turbine for generating power has a rotor chamber, a rotor rotatable about a central axis within the rotor chamber, and at least one nozzle for supplying a fluid from a fluid supply to the rotor to thereby drive the rotor and generate power. The flow of the fluid from the nozzle exist is periodically interrupted by at least one flow interrupter means, thereby raising a pressure of the fluid inside the nozzle. A thermo-dynamic cycle is also disclosed including a compressor, a first turbine downstream of the compressor, a heat exchanger located downstream of the first turbine and operable to reject heat from the cycle to another thermodynamic cycle, an evaporator downstream of the heat exchanger and a second turbine downstream of the evaporator and upstream of the compressor.
Abstract:
An axial flow cylinder of pneumatic tool, including: a cylinder body formed with an internal cylinder chamber; a rotary shaft rotatably disposed in the cylinder chamber along an axis of the cylinder body; and a predetermined number of movable wheels and fixed wheels mounted in the cylinder chamber. Multiple oblique first vents are annularly formed on each movable wheel at equal intervals. Multiple oblique second vents are annularly formed on each fixed wheel at equal intervals. The first and second vents are inclined in reverse directions. The movable wheels and the fixed wheels are interlaced with each other. The fixed wheels are fixedly disposed in the cylinder chamber without possibility of rotation. The movable wheels are synchronously rotatable with the rotary shaft. After high-pressure air flows from the intake into the cylinder chamber, the movable wheels and rotary shaft are driven and rotated by the high-pressure air. The air flows along the axis of the cylinder body between the vents of the movable wheels and fixed wheels and then is exhausted from the exhaust ports. In operation, the vents of the cooperative movable wheels and fixed wheels compress the air.