Abstract:
A pump particularly for pumping a liquid such as ink, paint, glue or the like, includes at least one rotating pumping member having a respective shaft. The at least one rotating pumping member being at least partially housed inside a pump body, the shaft being rotatably supported by at least one support associated with the pump body. The shaft has on its external cylindrical surface in contact with the liquid one, or more recesses, or the at least one support includes on its internal cylindrical surface in contact with the liquid, one or more recesses.
Abstract:
An electric pump includes a housing that includes a gear chamber, a rotor chamber, and a motor chamber. The electric pump includes a first seal member, a second seal member, and a third seal member. The first seal member seals a space between the gear chamber and the rotor chamber. The second seal member seals the space between the gear chamber and the rotor chamber. The third seal member seals a space between the gear chamber and the motor chamber. The third seal member seals the space between the gear chamber and the motor chamber to a lesser extent than the first seal member and the second seal member seal the space between the gear chamber and the rotor chamber.
Abstract:
A rotary device includes a first rotor rotatable about a first axis and having at its periphery a recess bounded by a curved surface, and a second rotor counter-rotatable to the first rotor about a second axis, parallel to the first axis, and having a radial lobe bounded by a curved surface, the first and second rotors being coupled for intermeshing rotation, wherein the first and second rotors of each section intermesh in such a manner that on rotation thereof, a transient chamber of variable volume is defined, the transient chamber having a progressively increasing or decreasing volume between the recess and lobe surfaces, the transient chamber being at least in part defined by the surfaces of the lobe and the recess; the ratio of the maximum radius of the lobe rotor and the maximum radius of the recess rotor being greater than 1.
Abstract:
A reduced noise screw expander is described, which comprises a main rotor and a gate rotor each having an ‘N’ profile. The rotors are designed so that the torque on the gate rotor caused by pressure forces is in the same direction as the torque on the gate rotor caused by frictional drag forces. A method of designing a screw machine exhibiting reduced noise is also described. The screw machine has two or more rotors having an ‘N’ profile, and the method involves determining a ratio r/r1, where r is the main rotor addendum and r1 is the radius of the rack round side, and ensuring that this ratio is greater than 1.1 where the screw machine is to be a screw compressor or less than or equal to 1.1 where the screw machine is to be a screw expander.
Abstract:
A gear wheel comprising a plurality of helical teeth, each helical tooth of the gear wheel having a tooth profile meshing with semi-encapsulation in a geared hydraulic apparatus. Each tooth having a profile which falls within a band of tolerance of +− 1/15 of the depth of a nominal tooth defined by a spline function interpolating a plurality of node points having pre-established coordinates {X,Y} with their origin on the gear wheel center.
Abstract:
A pair of meshed gears is disposed in a hydraulic chamber of a housing. Bushes in the chamber contact both end surfaces of the gears. Edge surfaces of the gears are chamfered at intermediate parts between tooth tips and tooth bottoms, and the inclination of the intermediate parts is larger than those of the tooth tips and bottom, thereby protecting the edges from damage due to contact force as the gears mesh and preventing leakage between the gears and the support members. Accordingly, the gears may be operated quietly, at high output efficiency, and increased reliability for an extended period.
Abstract:
A rotary chambered fluid energy-transfer device includes a housing with a central portion having a bore formed therein and an end plate forming an arcuate inlet passage, with a radial height and a circumferential extent. The device also includes an outer rotor rotatable in the central portion bore with a female gear profile formed in a radial portion defining a plurality of roots and an inner rotor with a male gear profile defining a plurality of lobes in operative engagement with the outer rotor. A minimum radial distance between an outer rotor root and a corresponding inner rotor lobe define a duct end face proximate the end plate, wherein the duct end face has a radial height substantially equivalent to the inlet passage radial height at a leading edge of the inlet passage.
Abstract:
A rotary device includes a first rotor rotatable about a first axis and having at its periphery a recess bounded by a curved surface, and a second rotor counter-rotatable to the first rotor about a second axis, parallel to the first axis, and having a radial lobe bounded by a curved surface, the first and second rotors being coupled for intermeshing rotation, wherein the first and second rotors of each section intermesh in such a manner that on rotation thereof, a transient chamber of variable volume is defined, the transient chamber having a progressively increasing or decreasing volume between the recess and lobe surfaces, the transient chamber being at least in part defined by the surfaces of the lobe and the recess; the ratio of the maximum radius of the lobe rotor and the maximum radius of the recess rotor being greater than 1.
Abstract:
A screw machine for use with a working fluid with a liquid phase present comprises rotors having meshed, lubricated helical formations. The rotors have an ‘N’ profile as disclosed in WO 97/43550. In use, lubrication of the helical formations of the rotors and optionally of the rotor bearings is achieved substantially exclusively with the liquid phase of the working fluid.
Abstract:
A refrigeration cycle apparatus 1 includes a refrigerant circuit in which a refrigerant circulates. The refrigerant circuit is formed by connecting in sequence a compressor 2 for compressing the refrigerant, a radiator 3 for allowing the refrigerant compressed by compressor 2 to radiate heat, a fluid pressure motor 4 as a power recovery means, and an evaporator 5 for allowing the refrigerant discharged by the fluid pressure motor 4 to evaporate. The fluid pressure motor 4 performs a process for drawing the refrigerant and a process for discharging the refrigerant. These processes are performed substantially continuously.