Abstract:
A rotary internal combustion engine includes an outer housing and an inner housing and an enclosure defined therebetween. At least one of the outer and inner housings is rotatable relative to the other and at least two barriers are disposed in the enclosure and divide the enclosure into a combustion chamber and an exhaust chamber. At least one barrier is rotatable relative to at least one other barrier and at least one barrier comprises a retractable barrier mounted along a pivot axis and is pivotable between an extended position and a retracted position. An intake port, exhaust port, and ignition source are also provided. A method of combusting a fuel comprises rotating a drive member to expand a combustion chamber and substantially isolate the combustion chamber from an exhaust chamber, and introducing and combusting a combustion fluid and a fuel in the combustion chamber as the combustion chamber is expanding.
Abstract:
A rotary expander includes: a cylinder (61); a piston (62) disposed inside the cylinder (61); closing members disposed with the cylinder (61) being sandwiched therebetween; and an injection passage for introducing further a working fluid in the expansion process of the working fluid. An introduction outlet (65c) of the injection passage leading to the working chamber (69) is provided at a position located inwardly away from the inner circumferential surface (61b) of the cylinder (61), on one of the closing members, in such a manner that the injection passage and the discharge passage are not communicated with each other.
Abstract:
A fluid machine includes a casing, a compression mechanism for compressing refrigerant, an expansion mechanism for expanding refrigerant, and a rotary shaft connecting the compression mechanism and the expansion mechanism. The compression mechanism, the expansion mechanism and the rotary shaft are disposed in the casing. A heat insulator partitions an internal space of the casing into a first space with the expansion mechanism disposed therein and a second space with the compression mechanism disposed therein. The rotary shaft passes through the heat insulator. An elastically deformable seal element seals a clearance between an outer periphery of the heat insulator and an inner periphery of the casing.
Abstract:
A refrigeration cycle apparatus 1 includes a refrigerant circuit in which a refrigerant circulates. The refrigerant circuit is formed by connecting in sequence a compressor 2 for compressing the refrigerant, a radiator 3 for allowing the refrigerant compressed by compressor 2 to radiate heat, a fluid pressure motor 4 as a power recovery means, and an evaporator 5 for allowing the refrigerant discharged by the fluid pressure motor 4 to evaporate. The fluid pressure motor 4 performs a process for drawing the refrigerant and a process for discharging the refrigerant. These processes are performed substantially continuously.
Abstract:
A fluid machine includes a casing, a compression mechanism for compressing refrigerant, an expansion mechanism for expanding refrigerant, and a rotary shaft connecting the compression mechanism and the expansion mechanism The compression mechanism, the expansion mechanism and the rotary shaft are disposed in the casing. A heat insulator partitions an internal space of the casing into a first space with the expansion mechanism disposed therein and a second space with the compression mechanism disposed therein. The rotary shaft passes through the heat insulator. An elastically deformable seal element seals a clearance between an outer periphery of the heat insulator and an inner periphery of the casing.
Abstract:
A casing (31) houses therein an expansion mechanism (60) and a compression mechanism (50). The expansion mechanism (60) has a rear head (62) in which a pressure snubbing chamber (71) is provided. The pressure snubbing chamber (71) is divided by a piston (77) into an inflow/outflow chamber (72) which fluidly communicates with an inflow port (34) and a back pressure chamber (73) which fluidly communicates with the inside of the casing (31). The piston (77) is displaced in response to suction pressure variation whereby the volume of the inflow/outflow chamber (72) varies. This enables the inflow/outflow chamber (72) to directly perform supply of refrigerant to or suction of refrigerant from the inflow port (34) which is a source of pressure variation, thereby making it possible to effectively inhibit suction pressure variation.
Abstract:
A positive displacement expander includes a volume change mechanism (90) for changing the volume of a first fluid chamber (72) of an expansion mechanism (60). The expansion mechanism (60) includes a first rotary mechanism (70) and a second rotary mechanism (80) each having a cylinder (71, 81) containing a rotor (75, 85). The first fluid chamber (72) of the first rotary mechanism (70) and a second fluid chamber (82) of the second rotary mechanism (80) are in fluid communication with each other to form an actuation chamber (66). Meanwhile, the first fluid chamber (72) of the first rotary mechanism (70) is smaller than the second fluid chamber (82) of the second rotary mechanism (80). The volume change mechanism (90) includes an auxiliary chamber (93) fluidly communicating with the first fluid chamber (72) and an auxiliary piston (92) for changing the volume of the auxiliary chamber (93). The auxiliary chamber (93) is in fluid communication with the first fluid chamber (72) of the first rotary mechanism (70).
Abstract:
A rotary internal combustion engine includes outer and inner housings defining an enclosure therebetween, and first and second side housings disposed on opposite sides of the outer housing. The inner housing is rotatable relative to the outer housing, at least one retractable barrier and at least one fixed barrier. The at least one retractable barrier and the at least one fixed barrier are disposed in the enclosure so as to divide the enclosure into a combustion chamber and an exhaust chamber. The at least one retractable barrier is mounted along a pivot axis and is pivotable between an extended position and a retracted position. An intake port, exhaust port, and ignition source are also provided. An exhaust duct extends from within the enclosure to outside the outer housing in a direction tangent to flow in the enclosure.
Abstract:
A rotary internal combustion engine includes outer and inner housings defining an enclosure therebetween, and first and second side housings disposed on opposite sides of the outer housing. The inner housing is rotatable relative to the outer housing and at least two barriers divide the enclosure into a combustion chamber and an exhaust chamber. At least one barrier is rotatable relative to at least one other barrier and at least one barrier comprises a retractable barrier mounted along a pivot axis and is pointable between an extended position and a retracted position. An intake port, exhaust port, and ignition source are also provided. The rotary internal combustion engine further includes a cylindrical stationary shaft disposed inside the inner housing and oriented substantially coaxially with the inner housing. The stationary shaft has an intake opening configured to be intermittently fluidly connected with the intake port.
Abstract:
Engines and methods execute a high efficiency hybrid cycle, which is implemented in a volume within an engine. The cycle includes isochoric heat addition and over-expansion of the volume within the engine, wherein the volume is reduced in a compression portion of the cycle from a first quantity to a second quantity, the volume is held substantially constant at the second quantity during a heat addition portion of the cycle, and the volume is increased in an expansion portion of the cycle to a third quantity, the third quantity being larger than the first quantity.