Abstract:
A generator system uses compressed air as a power source and utilizes an electromagnetic auxiliary power unit. The generator system includes an engine (1), a multiple-column power distributor (2), a generator system (4), a controller system (6), an intake speed control valve (23), a high pressure gas tank (13), a constant pressure tank (16), an electronic control unit ECO (29), an electromagnetic auxiliary power unit (1000), a power distributor (1100) and an end gas recycle loop. The end gas recycle loop includes an air compressor (7), a condenser (11), an end gas recycle tank (9), an electro-drive turbine unidirectional suction pump (19) and an end gas muffler (22).
Abstract:
A reciprocating-piston uniflow engine includes a harmonic oscillator inlet valve capable of oscillating at a resonant frequency for controlling the flow of working fluid into the engine. In particular, the inlet valve includes an inlet valve head and a spring arranged together as a harmonic oscillator so that the inlet valve head is moveable from an unbiased equilibrium position to a biased closed position occluding an inlet. When released, the inlet valve head undergoes a single oscillation past the equilibrium position to a maximum open position and returns to a biased return position close to the closed position to choke the flow and produce a pressure drop across the inlet valve causing the inlet valve to close. In other embodiments, the harmonic oscillator arrangement of the inlet valve enables the uniflow engine to be reversibly operated as a uniflow compressor.
Abstract:
A generator system uses compressed air as a power source and utilizes an electromagnetic auxiliary power unit. The generator system includes an engine (1), a multiple-column power distributor (2), a generator system (4), a controller system (6), an intake speed control valve (23), a high pressure gas tank (13), a constant pressure tank (16), an electronic control unit ECO (29), an electromagnetic auxiliary power unit (1000), a power distributor (1100) and an end gas recycle loop. The end gas recycle loop includes an air compressor (7), a condenser (11), an end gas recycle tank (9), an electro-drive turbine unidirectional suction pump (19) and an end gas muffler (22).
Abstract:
Pressure medium regulating device in which a fluid cell is positioned between the inlet and outlet of the device. The inlet is connected to a source of pressure medium and the outlet to a motor or other apparatus fed and operated by the regulating device. Flow through the regulator is reduced or increased in accordance with demand by the fluid cell which responds to line pressure of the pressure medium.
Abstract:
A hydraulic control circuit for a hydraulic motor operable at least at two displacements, having a proportional speed control valve with a control valve spool continuously moveable by means of a force generated by a pilot pressure being controlled by a continuously, electrically adjustable pilot valve having an electrical actuator, wherein the control valve spool is moveable between a full-torque end position, a reduced-torque end position, and at least one intermediate position. A time related control current function is provided for controlling the current applied to the electrical actuator for controlling the pilot pressure including a pre-current portion with a constant non-zero current and a current ramp portion during which the current is raised or lowered continuously from a ramp starting current level to an intermediate current level. The current is changed abruptly to a switching current level at the end of the current ramp portion for allowing the movement of the speed control valve spool from one of the two end positions via the at least one intermediate switching position into the other end position.
Abstract:
A reciprocating-piston uniflow engine includes a harmonic oscillator inlet valve capable of oscillating at a resonant frequency for controlling the flow of working fluid into the engine. In particular, the inlet valve includes an inlet valve head and a spring arranged together as a harmonic oscillator so that the inlet valve head is moveable from an unbiased equilibrium position to a biased closed position occluding an inlet. When released, the inlet valve head undergoes a single oscillation past the equilibrium position to a maximum open position and returns to a biased return position close to the closed position to choke the flow and produce a pressure drop across the inlet valve causing the inlet valve to close. In other embodiments, the harmonic oscillator arrangement of the inlet valve enables the uniflow engine to be reversibly operated as a uniflow compressor.
Abstract:
A speed control unit for a pneumatic rotation motor having a stator (10) with an air inlet passage (14), a rotor (11) journalled in the stator (10). The speed control unit includes a speed governor (26) operated by two or more fly-weight members (28), and an overspeed safety device (27). The rotor (11) is formed with a coaxial blind bore (22) in which is secured a mounting structure (23) for supporting the fly-weight members (28), the valve element (29) and the bias spring (35) of the speed governor (26) inside the rotor (11). The overspeed safety device (27) includes a flow restricting element (39) displaceably guided in the air inlet passage (14) and locked in an inactive rest position by a trip element (43), and a speed responsive actuator (45) that is co-rotative with the rotor (11). The speed responsive actuator (45) may be formed by an elastically deformable spring element (44) secured to the speed governor valve element (29) and arranged to be radially bent by centrifugal action to hit and release the trip element (43) to thereby free the flow restricting element (39) at the attainment of a predetermined speed level.
Abstract:
A remote control modification (11) for a hydraulic steering system (13) of the type used to steer underground loaders and the like is disclosed. The remote control modification comprises a bidirectional, spring-loaded remote control valve (51) connected in parallel with the bidirectional, spring-loaded control valve (19) that normally responds to steering inputs created by the manual movement of a steering arm (25). The remote control valve (51) has outlet ports (75 and 77) that are smaller than the outlet ports (39 and 41) of the manual control valve (19). Movement of the piston of the remote control valve (51) is controlled by a slave hydraulic actuator (53). The flow of hydraulic fluid to the slave hydraulic actuator (53) is controlled by a solenoid-actuated valve (59). The solenoid (61) of the solenoid-operated valve (59), in turn, is controlled by a receiver (63) that responds to radio frequency control signals (105) generated by a remotely located transmitter (65). Located in the hydraulic lines between the solenoid-operated valve (59) and the slave hydraulic actuator (53) are restrictor/reverse bypass pressure relief valve combinations (55 and 57). Finally, preferably, the hydraulic line running to the larger capacity chamber of the slave hydraulic actuator (53), i.e., the non-shaft chamber, is coupled to the hydraulic return tank via a relief line that contains a manually adjustable restrictor valve (67).