Abstract:
One embodiment is directed to an oven for heating fibers. The oven comprises a plurality of walls forming a chamber and a supply structure disposed within the chamber between first and second ends of the chamber. The supply structure is in communication with a first heating system and is configured to direct heated gas from the first heating system into a first portion of the chamber. The supply structure is in communication with a second heating system and is configured to direct heated gas from the second heating system into a second portion of the chamber.
Abstract:
A method includes a freezing process in which a solution or gel containing cellulose nanofibers is frozen to obtain a frozen component, a drying process in which the frozen component is dried in a vacuum to obtain a dry component, and a carbonizing process in which the dry component is heated and carbonized in a non-combustible atmosphere, and in the carbonizing process, the dry component is heated together with a reducing catalyst and also a material that generates a reducing gas by thermal decomposition.
Abstract:
An example oven for heating fibers includes a chamber having upper and lower portions and a supply structure between first and second ends of the chamber, wherein the supply structure is in communication with a first heating system and is configured to direct first heated gas from the first heating system into the upper portion of the chamber to heat fibers in the upper portion at a first temperature, and wherein the supply structure is in communication with a second heating system and is configured to direct second heated gas from the second heating system into the lower portion of the chamber to heat fibers in the lower portion at a second temperature different than the first temperature such that the upper and lower portions of the chamber maintain the different temperatures without a physical barrier between the upper and lower portion.
Abstract:
An example oven for heating fibers includes a chamber having upper and lower portions and a supply structure between first and second ends of the chamber, wherein the supply structure is in communication with a first heating system and is configured to direct first heated gas from the first heating system into the upper portion of the chamber to heat fibers in the upper portion at a first temperature, and wherein the supply structure is in communication with a second heating system and is configured to direct second heated gas from the second heating system into the lower portion of the chamber to heat fibers in the lower portion at a second temperature different than the first temperature such that the upper and lower portions of the chamber maintain the different temperatures without a physical barrier between the upper and lower portion.
Abstract:
An apparatus and method for carbonizing or activating carbon nanofibers, or both carbonizing and activating carbon nanofibers, using separate heating of nanofibers and process gases for increased sample temperature response to reduce production costs and improve process control. In one embodiment, the system includes a reactor tube into which a selected atmosphere can be introduced and which is closed at the ends by flanges. Samples are placed inside the tube on or in a susceptor, which is heated by RF induction via RF coils surrounding the reactor tube, and process gases, which can be independently heated, flow through the tube.
Abstract:
One embodiment is directed to an oven for heating fibers. The oven comprises a plurality of walls forming a chamber and a supply structure disposed within the chamber between first and second ends of the chamber. The supply structure is in communication with a first heating system and is configured to direct heated gas from the first heating system into a first portion of the chamber. The supply structure is in communication with a second heating system and is configured to direct heated gas from the second heating system into a second portion of the chamber.