Abstract:
The present application discloses a ceramic preform, a method of making a ceramic preform and a metal matrix composite comprising a ceramic preform. In one exemplary embodiment, the ceramic preform comprises a ceramic compound compressed into the shape of a cylinder by rotational compression molding. The cylinder has an inner surface and an outer surface. A first liner may be attached to the inner surface of the cylinder and a second liner may attached to the outer surface of the cylinder. The metal matrix composite of the present application may be formed as a brake drum or a brake disc.
Abstract:
In one embodiment, a composition (10) to be mixed with a molten metal to make a metal matrix composite, the composition characterized by: a ceramic reinforcing filler (12), the ceramic reinforcing filler not being wettable by molten aluminum and/or not being chemically stable in molten aluminum, the ceramic reinforcing filler being coated with a ceramic material, the ceramic material being wettable by and chemically stable in molten aluminum. In a related embodiment, a composition (20) to make a porous preform to be infiltrated by molten metal to make a metal matrix composite, the composition characterized by: a ceramic reinforcing filler (23), the ceramic reinforcing filler not being wettable by molten aluminum, the ceramic reinforcing filler being coated with a ceramic material (22) and optionally with a metal (21) such as nickel, the ceramic material being wettable by molten aluminum. The ceramic material can be coated on the ceramic reinforcing filler by a vacuum deposition technique such as vacuum sputtering.
Abstract:
Both ceramic and intermetallic materials as a rule have a very small elongation at break of distinctly less than 0.3% and therefore a break behaviour with low damage tolerance. In order to increase the damage tolerance, it is important to increase the elongation at break to at least 0.3% or more. This can be achieved by introducing, for example, fibres consisting of carbon or ceramic or metal fibres into the matrix. It is important in this respect for the distribution of the fibres in the matrix to be homogeneous and/or defined. It is of advantage and therefore as a rule desirable for the fibres for reinforcing a material or component to be oriented in a defined direction which is adapted to the main stress.Therefore, according to the invention, a fibre-ceramic composite is proposed which consists of a ceramic matrix with a pore proportion of 0% to 75% and a fibre proportion of 5% by volume to 30% by volume, wherein the distribution of the fibres in the matrix is homogeneous and/or defined, and their quantity and orientation are optimized in relation to the material load.
Abstract:
A method of producing a metal-graphite foam composite, and particularly, the utilization thereof in connection with a cooling apparatus. Also provided is a cooling apparatus, such as a liquid cooler or alternatively, a heat sink for electronic heat-generating components, which employ the metal-graphite foam composite.
Abstract:
A ceramic foam having pores in the range of 20 to 800 microns and 10 to 30 % of theoretical density is placed in a preheated mould and molten metal or plastics is drawn in to form a bicomposite structure.
Abstract:
An improved ceramic/metal composite material is disclosed which is fully reacted with aluminum. The composite is made from a ceramic preform, such as silicon carbide, having a binding agent, such as silica, that is contacted with a metal mixture or alloy, such as aluminum/silicon, that reacts with the binding agent to form a ceramic/metal composite material. Also disclosed is a method of making the improved composite material and articles made incorporating the material.
Abstract:
A hydrogen permeable composition having a porous ceramic substrate, and a two part membrane adhered thereto. The two part membrane has a metal powder part and a ceramic oxide part, with the metal powder part being Ni, Pd, Pd alloys, Nb, Ta, Zr, V or mixtures thereof. The oxide part is yttria stabilized zirconia, shrinkable alumina, suitably doped cerates, titanate, zirconates of barium or strontium or mixtures thereof, and the hydrogen flux is at least 20 cm3 per minute-cm2 at 500° C. in a 100% hydrogen atmosphere. A paste method of forming the composition is disclosed. A method of extracting hydrogen from a gas is also disclosed.
Abstract:
The present invention relates to producing refractory composite materials, practically poreless, and can be used for production of composite articles with increased size stability, wear resistance, high specific physico-mechanical properties and hardness, production of wear-resistant inserts in components and materials for tribo-technical purposes as well. The present method for producing a refractory composite material includes the steps of infiltration of a porous carbide work-piece by a metal resulting in preparation of an intermediate body, which is additionally treated in a melt of another metal at temperature exceeding the melting point of the metallic phase of the intermediate body, resulting in substitution of the metal in the intermediate body by the metal from the melt. The present invention extends the series of metals, which ban be introduced in composition of composite materials, and thus extends the application area of composite materials of this type.
Abstract:
A reinforced composite material, having isotropic thermal expansion properties and a low coefficient of thermal expansion over at least the temperature range of from about 0° C. to at least about 150° C. The composite material comprises in combination a preformed bonded powder material reinforcement in which the bonded powder material is chosen from zirconium tungstate, hafnium tungstate, zirconium hafnium tungstate, and mixtures of zirconium tungstate and hafnium tungstate, and a matrix material chosen from aluminium, aluminium alloys in which aluminium is the major component, magnesium, magnesium alloys in which magnesium is the major component, titanium, titanium alloys in which titanium is the major component, engineering thermoplastics and engineering thermoplastics containing a conventional solid filler.
Abstract:
A metal-ceramic composite material has a ceramic matrix and a metallic phase, which are intermingled with one another, together form a virtually completely dense body and are in contact with one another at boundary surfaces. An interlayer between the metallic phase and the ceramic matrix has a thickness of between 10 nm and 1 000 nm and is composed of reaction products of the metallic phase and the ceramic phase.