Abstract:
This disclosure relates mRNA therapy for the treatment of ornithine transcarbamylase deficiency (OTCD). mRNAs for use in the invention, when administered in vivo, encode human ornithine transcarbamylase (OTC), isoforms thereof, functional fragments thereof, and fusion proteins comprising OTC. mRNAs of the invention are preferably encapsulated in lipid nanoparticles (LNPs) to effect efficient delivery to cells and/or tissues in subjects, when administered thereto. mRNA therapies of the invention increase and/or restore deficient levels of OTC expression and/or activity in subjects. mRNA therapies of the invention further decrease levels of toxic ammonia associated with deficient OTC activity in subjects.
Abstract:
Viral vectors comprising engineered hOTC DNA and RNA sequences are provided which when delivered to a subject in need thereof are useful for treating hyperammonemia, ornithine transcarbamylase deficiency and symptoms associated therewith. Also provided are methods of using hOTC for treatment of liver fibrosis and/or cirrhosis in OTCD patients by administering hOTC.
Abstract:
The present invention provides an improved process for lipid nanoparticle formulation and mRNA encapsulation. In some embodiments, the present invention provides a process of encapsulating messenger RNA (mRNA) in lipid nanoparticles comprising a step of mixing a solution of pre-formed lipid nanoparticles and mRNA.
Abstract:
The present invention relates to a putrescine-producing microorganism and a method for producing putrescine using the same. To be more specific, the present invention is directed to a microorganism given the ability to produce putrescine which is generated by blocking a biosynthetic pathway from ornithine to arginine, increasing the intracellular level of glutamate, enhancing the biosynthetic pathway of ornithine from glutamate, and introducing extracellular ornithine decarboxylase; and a method for producing putrescine by using the microorganism.
Abstract:
Sequences of a serotype 8 adeno-associated virus and vectors and host cells containing these sequences are provided. Also described are methods of using such host cells and vectors in production of rAAV particles.
Abstract:
Sequences of a serotype 8 adeno-associated virus and vectors and host cells containing these sequences are provided. Also described are methods of using such host cells and vectors in production of rAAV particles.
Abstract:
The present invention relates to a microorganism having an improved ornithine-producing ability, in which the biosynthetic pathway of arginine form ornithine is blocked, the intracellular glutamate level is increased, and the biosynthetic pathway of ornithine from glutamate is enhanced, and a method for producing ornithine using the microorganism.
Abstract:
Disclosed are cationic polymers comprising monomers such as those described in Formula (I). Such polymers can be useful for the preparation of therapeutic compositions [e.g., compositions comprising nucleic acids such as m RNA). Additionally, therapeutic compositions comprising these cationic, biodegradable polymers can have improved properties and reduced toxicity.
Abstract:
The present invention relates to a recombinant microorganism for producing putrescine or ornithine, and a method for producing putrescine or ornithine using the same. Specifically, the present invention relates to a microorganism of the genus Corynebacterium capable of producing putrescine or ornithine, in which an activity of the transcriptional regulator of sugar metabolism (SugR) is weakened, an activity of the citrate synthase (GltA) is enhanced, or both are applied; and a method for producing putrescine or ornithine using the same.
Abstract:
The present invention relates to the provision of genetically modified microbial cells, such as yeast cells with an improved ability for producing L-ornithine and its derivatives. Overproduction of L-ornithine is obtained in the first place by the down-regulation or attenuation of specially selected genes, wherein said genes encode enzymes involved in the L-ornithine consumption and/or degradation pathways. Further L-ornithine production ability is improved by down-regulation, attenuation, deletion or overexpression of specially selected genes, wherein said genes encode enzymes and/or proteins involved in the L-ornithine ‘acetylated derivatives cycle’, L-glutamate synthesis pathways, subcellular trafficking, TCA cycle, pyruvate carboxylation pathway, respiratory electron-transport chain, and the carbon substrates' assimilation machinery. The invention additionally provides a method to produce L-ornithine with said modified eukaryotic cells.