Abstract:
A RECHARGEABLE NON-AQUEOUS ALKALI METAL-HALOGEN ELECTROCHEMICAL CELL IS DESCRIBED WHICH INCLUDES AN ALKALI METAL ANODE, A HALOGEN CATHODE, A NON-AQUEOUS ELECTROLYTE, AND AN ION PERMEABLE BARRIER BETWEEN THE ELECTRODES SEPARATING THE ELECTROLYTE INTO ANOLYTE AND CATHOLYTE RESERVOIRS. THE BARRIER HAS FINELY DIVIDED PARTICLES HAVING THROUGH PORES AND A BINDER JOINING THE PARTICLES INTO A UNITARY STRUCTURE.
Abstract:
The invention relates to organic/inorganic hybrid polymer blends and hybrid polymer blend membranes that are composed of: one polymer acid halide containing SO2X, POX2 or COX groups (X═, Cl, Br, I); one elemental or metallic oxide or hydroxide, obtained by the hydrolysis and/or the sol/gel reaction of an elemental and/or organometallic compound during the membrane forming process and/or by subsequently treating the membrane in aqueous acidic, alkaline or neutral electrolytes. The invention further relates to hybrid blends and hybrid blend membranes containing polymers that carry SO3H, PO3H2 and/or COOH groups, obtained by aqueous, alkaline or acidic hydrolysis of the polymer acid halides contained in the polymer blend or the polymer blend membrane. The invention also relates to methods for producing the inventive hybrid blends and hybrid blend membranes.
Abstract:
The invention relates to organic/inorganic hybrid polymer blends and hybrid polymer blend membranes that are composed of: one polymer acid halide containing SO2X, POX2 or COX groups (X═F, Cl, Br, I); one elemental or metallic oxide or hydroxide, obtained by the hydrolysis and/or the sol/gel reaction of an elemental and/or organometallic compound during the membrane forming process and/or by subsequently treating the membrane in aqueous acidic, alkaline or neutral electrolytes. The invention further relates to hybrid blends and hybrid blend membranes containing polymers that carry SO3H, PO3H2 and/or COOH groups, obtained by aqueous, alkaline or acidic hydrolysis of the polymer acid halides contained in the polymer blend or the polymer blend membrane. The invention also relates to methods for producing the inventive hybrid blends and hybrid blend membranes.
Abstract:
A CHLORINATED POLYMER IS COMPOUNDED WITH A LEAD SALT STABILIZER AND A CROSS-LINKING AGENT, AND THEN CURED UNDER STEAM PRESSURE TO EFFECT CROSS-LINKING OF THE POLYMER. THE RESULTING CROSS-LINKED PRODUCT, BEARING WHITE SURFACE AREAS OR SPOTS, IS PASSED THROUGH A POLAR ORGANIC SOLVENT, WHEREBY THE SPOTS APPEARING ON THE SURFACE OF THE CROSS-LINKED PRODUCT ARE REMOVED THEREFROM BY THE ACTION OF THE SOLVENT.
Abstract:
The invention relates to organic/inorganic hybrid polymer blends and hybrid polymer blend membranes that are composed of: one polymer acid halide containing SO2X, POX2 or COX groups (XnullF, Cl, Br, I); one elemental or metallic oxide or hydroxide, obtained by the hydrolysis and/or the sol/gel reaction of an elemental and/or organometallic compound during the membrane forming process and/or by subsequently treating the membrane in aqueous acidic, alkaline or neutral electrolytes. The invention further relates to hybrid blends and hybrid blend membranes containing polymers that carry SO3H, PO3H2 and/or COOH groups, obtained by aqueous, alkaline or acidic hydrolysis of the polymer acid halides contained in the polymer blend or the polymer blend membrane. The invention also relates to methods for producing the inventive hybrid blends and hybrid blend membranes.
Abstract:
A method of preparing a foamable polyvinyl system resin composition which renders a non-flammable, high strength to weight ratio foam product comprises, reacting at least 0.05 parts by weight of an organic radical initiator per 1 part by weight of polyvinyl system resin with the components consisting essentially of (a) at least one polyvinyl system resin (b) 2-100 parts by weight of at least one inorganic filler per 1 part by weight of polyvinyl system resin (c) an effective amount of at least one blowing agent.