Abstract:
Nanoparticle compositions contain a graphene-based material. A preparation process involves providing several components and milling a mixture. The nanoparticle compositions can be used as a lubricant additive to improve tribological performance, in particular to improve anti-friction and anti-wear performance on metal parts. A corresponding lubricant composition contains these nanoparticle compositions.
Abstract:
Provided is a core-shell copolymer, and in particular, a core-shell copolymer including a core and a shell surrounding the core, wherein the core includes a conjugated diene monomer-derived repeating unit, an aromatic vinyl monomer-derived repeating unit, and an aromatic (meth)acrylate monomer-derived repeating unit, the shell includes an alkyl (meth)acrylate monomer-derived repeating unit, an aromatic vinyl monomer-derived repeating unit, and an aromatic (meth)acrylate monomer-derived repeating unit, the core has a particle size of 800 Å to 900 Å, the core-shell copolymer has a particle size of 900 Å to 1000 Å, the core has a refractive index of 1.5355 to 1.5425, and the core-shell copolymer has a refractive index of 1.5415 to 1.5440.
Abstract:
A resin composition that can exhibit good heat resistance and/or insulation properties includes (A) a polycarbonate resin, (B) a vinyl-based copolymer, (C) a fluorinated polyolefin and (D) a phosphorus-based flame retardant represented by Chemical Formula 1: wherein, in Chemical Formula 1, R6, R7, R9 and R10 are the same or different and are each independently a C6 to C20 aryl group or C1 to C14 alkyl-substituted C6 to C20 aryl group, R8 is biphenyl, and n is an integer ranging from 1 to 5.
Abstract:
The present invention relates to a process for producing impact modifiers, impact modified thermoplastic molding compositions and in particular impact modified polycarbonate or polycarbonate/polyester blends having improved resistance to degradation. More particularly the present invention relates to a process for producing polymeric impact modifiers with a core-shell structure made by a multistage process comprising a control and adjustment if necessary of the pH value before and during the recovery step.
Abstract:
The present invention relates to a thermoplastic resin composition comprising a rubber graft copolymer comprising a core layer containing a rubber copolymer and a shell layer grafted on the core layer and a thermoplastic resin comprising a polycarbonate resin and an aliphatic polyester resin in the mass ratio of the rubber graft copolymer/the thermoplastic resin of 3/100 or more, wherein the shell layer is obtained by polymerizing or copolymerizing a (meth)acrylate monomer having an epoxy group, and the amount of the (meth)acrylate monomer having an epoxy group is 3 parts by mass or more and less than 29 parts by mass based on 100 parts by mass of the rubber graft copolymer. The thermoplastic resin composition of the present invention can be utilized in various applications.
Abstract:
The instant invention relates to a stabilized composition of methylmethacrylate-butadiene-styrene graft copolymers with selected sterically hindered phenolic antioxidants and thioethers. Further subjects of the invention are a process for the stabilization of methylmethacrylate-butadiene-styrene graft copolymers and the use of selected sterically hindered phenolic antioxidants together with a thioether for the thermal stabilization of said graft copolymer.
Abstract:
An aromatic carbonate polymer composition having improved thermal stability consisting of an aromatic carbonate polymer such as a polycarbonate or polycarbonate/polyester blend and an impact modifier which is free of alkali materials which catalytically degrade a polycarbonate. Also an impact modifier which is preferably of a shell-core structure prepared by the emulsion polymerization process and has a pH of about 3 to about 8. A preferred emulsifier is an alkyl sulfonate having an alkyl group of C6-C18 carbons.
Abstract:
An aromatic carbonate polymer composition having improved thermal stability consisting of an aromatic carbonate polymer such as a polycarbonate or polycarbonate/polyester blend and an impact modifier which is free of alkali materials which catalytically degrade a polycarbonate. Also an impact modifier which is preferably of a shell-core structure prepared by the emulsion polymerization process and has a pH of about 3 to about 8. A preferred emulsifier is an alkyl sulfonate having an alkyl group of C6-C18 carbons.
Abstract:
The present invention relates to a polymer produced by polymerizing a vinyl aromatic monomer in the presence of a small amount of furfuryl (alkyl)acrylate.
Abstract:
Multi-stage rubber-based MBS resin compositions are provided which include a polymeric substrate stage of a conjugated diolefin-based polymer or copolymer and optional units derived from a cross-linking agent or agents, and at least one polymeric graft stage graft polymerized in the presence of the substrate stage which include monomers of an acrylate, a vinyl aromatic, or a mixture of those monomers and optional units derived from a cross-linking agent or agents and/or units which serve as a graft-linking agent or agents wherein the weight ratio of acrylate in all graft stages combined to vinyl aromatic in all graft stages combined is at least 1.2:1. Additionally, modified vinyl chloride polymer compositions which include a vinyl chloride polymer or copolymer in combination with an impact modifying, yellowness index improving amount of the multi-stage rubber-based resin compositions above are provided. These modified vinyl chloride polymer compositions have a low yellowness index, good clarity, and desirable impact properties. Finally, processes for the production of the above compositions are provided.