Abstract:
Disclosed is an optically active quaternary ammonium salt compound represented by the formula (1) below. Also disclosed are a production intermediate of such an optically active quaternary ammonium salt compound, and a method for producing such an optically active quaternary ammonium salt compound. (1) (In the formula, R1, R2, R21, R3 and R4 respectively represent an alkyl group, an aryl group or the like; R5 and R6 respectively represent an alkyl group, an alkoxy group or the like; and X− represents an anion.)
Abstract:
The present invention discloses an optically active quarternary ammonium salt having axial asymmetry and a method for producing an α-amino acid and a derivative thereof using the same. The optically active quarternary ammonium salt having axial asymmetry of the present invention is a chiral phase-transfer catalyst that has a simple structure and that can be produced in a smaller number of process steps. The compound of the present invention is very useful as a phase-transfer catalyst in the synthesis of an α-alkyl-α-amino acid and a derivative thereof as well as an α,α-dialkyl-α-amino acid and a derivative thereof. Therefore, the compound of the present invention can be used in the development of novel foods and pharmaceuticals.
Abstract:
The present invention relates to the discovery that specific human taste receptors in the T2R taste receptor family respond to particular bitter compounds present in, e.g., coffee. Also, the invention relates to the discovery of specific compounds and compositions containing that function as bitter taste blockers and the use thereof as bitter taste blockers or flavor modulators in, e.g., coffee and coffee flavored foods, beverages and medicaments. Also, the present invention relates to the discovery of a compound that antagonizes numerous different human T2Rs and the use thereof in assays and as a bitter taste blocker in compositions for ingestion by humans and animals.
Abstract:
This invention relates to novel lactams of Formula (I): having drug and bio-affecting properties, their pharmaceutical compositions and methods of use. These novel compounds inhibit the processing of amyloid precursor protein and, more specifically, inhibit the production of Aβ-peptide, thereby acting to prevent the formation of neurological deposits of amyloid protein. More particularly, the present invention relates to the treatment of neurological disorders related to β-amyloid production such as Alzheimer's disease and Down's Syndrome.
Abstract:
The present invention discloses an optically active quarternary ammonium salt having axial asymmetry and a method for producing an α-amino acid and a derivative thereof using the same. The optically active quarternary ammonium salt having axial asymmetry of the present invention is a chiral phase-transfer catalyst that has a simple structure and that can be produced in a smaller number of process steps. The compound of the present invention is very useful as a phase-transfer catalyst in the synthesis of an α-alkyl-α-amino acid and a derivative thereof as well as an α,α-dialkyl-α-amino acid and a derivative thereof. Therefore, the compound of the present invention can be used in the development of novel foods and pharmaceuticals.
Abstract:
This invention relates to novel cyclic malonamides having the formula (I): to their pharmaceutical compositions and to their methods of use. These novel compounds inhibit the processing of amyloid precursor protein and, more specifically, inhibit the production of Aβ-peptide, thereby acting to prevent the formation of neurological deposits of amyloid protein. More particularly, the present invention relates to the treatment of neurological disorders related to β-amyloid production such as Alzheimer's disease and Down's Syndrome.
Abstract:
This invention relates to novel cyclic malonamides having the formula (I): to their pharmaceutical compositions and to their methods of use. These novel compounds inhibit the processing of amyloid precursor protein and, more specifically, inhibit the production of Aβ-peptide, thereby acting to prevent the formation of neurological deposits of amyloid protein. More particularly, the present invention relates to the treatment of neurological disorders related to β-amyloid production such as Alzheimer's disease and Down's Syndrome.
Abstract:
A photoradical generator which produces no low-molecular decomposition material but a radical during a photoradical generating process, does not generate a radical during a heating process, exists in a chemically stable state in a resulting product of a radical reaction such as a cured coating layer or the like, has high heat resistance, stability and preserving ability, and is excellent in compatibility or solubility is provided. The photoradical generator is comprised of a compound (a) having a seven-membered ring imide structure-containing group represented by the following formula (1), wherein, R1 to R8 respectively represent a hydrogen atom or a substituent and may be a cyclic structure in which they are bonded to each other.
Abstract:
This invention relates to novel lactams having the Formula (I): to their pharmaceutical compositions and to their methods of use. These novel compounds inhibit the processing of amyloid precursor protein and, more specifically, inhibit the production of Aβ-peptide, thereby acting to prevent the formation of neurological deposits of amyloid protein. More particularly, the present invention relates to the treatment of neurological disorders related to β-amyloid production such as Alzheimer's disease and Down's Syndrome.
Abstract:
Specific phenylalanine derivatives or pharmaceutically acceptable salts thereof have an antagonistic effect on the α4 integrins and, therefore, are usable as therapeutic agents or preventive agents for diseases in which α4 integrin-depending adhesion process participates in the pathology, such as inflammatory diseases, rheumatoid arthritis, inflammatory bowel diseases, systemic lupus erythematosus, multiple sclerosis, Sjögren's syndrome, asthma, psoriasis, allergy, diabetes, cardiovascular diseases, arterial sclerosis, restenosis, tumor proliferation, tumor metastasis and transplantation rejection.