Abstract:
Strontium oxide (SrO) nanoparticle and various concentrations of chitosan (CS)-doped SrO nanocomposite were synthesized via co-precipitation method. A variety of characterization techniques including were done for characterizing and qualifying the nanocomposite. X ray powder diffraction affirmed cubic and tetragonal structure of SrO nanoparticle and CS-doped SrO nanocomposite with a decrease in crystallinity upon doping. Fourier transform infrared spectrum endorsed existing functional groups on CS/SrO surfaces while d-spacing was estimated using high resolution Transmission electron microscopes images. UV-Visible and Photoluminescence spectroscopy spectra showed an increase in band gap energies with an increase in doping concentration. Elemental composition of CS-doped SrO nanocomposite deposited with different doping concentrations was studied using Energy dispersive Spectroscopy. Addition of chitosan resulted in the formation of nanocomposite and rod-like structures that led to enhanced catalytic activity during methylene blue ciprofloxacin degradation in the presence of reducing agent sodium borohydrate at various pH conditions.
Abstract:
Ice-melt compositions including calcium chloride coated with a lignosulfonate material are disclosed. The ice-melt compositions can be useful as ice-melt products with improved safety. Also disclosed are methods of melting ice using an ice-melt composition and methods of making an ice-melt composition.
Abstract:
The present invention relates to a process for reducing in a gas stream the concentration of carbon dioxide and for reducing in an aqueous stream the concentration of sodium chloride, which process comprises contacting a feed gas comprising greater than or equal to 0.1% by volume carbon dioxide with an aqueous feed comprising: (a) sodium chloride; and (b) calcium oxide and/or calcium hydroxide at a total concentration of greater than or equal to 0.5% by weight, wherein the pH of the aqueous feed is greater than or equal to 10.0. A product aqueous stream obtained from the process of the invention is also described.
Abstract:
An apparatus for synergistically combining a plasma with a comminution means such as a fluid kinetic energy mill (jet mill), preferably in a single reactor and/or in a single process step is provided by the present invention. Within the apparatus of the invention potential energy is converted into kinetic energy and subsequently into angular momentum by means of wave energy, for comminuting, reacting and separation of feed materials. Methods of use of the apparatus in the practice of various processes are also provided by the present invention.
Abstract:
An apparatus for synergistically combining a plasma with a comminution means such as a fluid kinetic energy mill (jet mill), preferably in a single reactor and/or in a single process step is provided by the present invention. Within the apparatus of the invention potential energy is converted into kinetic energy and subsequently into angular momentum by means of wave energy, for comminuting, reacting and separation of feed materials. Methods of use of the apparatus in the practice of various processes are also provided by the present invention.
Abstract:
Provided are a liquid preparation wherein the pharmaceutically active ingredient is stabilized, and a stabilizing method therefor. A liquid preparation comprising a pharmaceutically active ingredient having a primary or secondary amino group (wherein the amino group does not constitute a part of the amide structure), an organic acid and a salt, which is substantially free of a reaction product of the pharmaceutically active ingredient and the organic acid.
Abstract:
A process for saturating a material capable of binding ammonia by ad- or absorption and initially free of ammonia or partially saturated with ammonia comprises treating said material under a pressure and associated temperature located on the vapor pressure curve of ammonia with an amount of liquid ammonia sufficient to saturate said material and an additional amount of a cooling agent selected from liquid ammonia, liquid or solid CO2, hydrocarbons and hydrohalocarbons that have a higher vapor pressure than ammonia, ethyl ether, methyl formate, methyl amine and ethyl amine, such that |Qabs|≦|Qevap|+Qext, wherein Qabs is the amount of heat released from said material when it absorbs ammonia from the liquid phase thereof to the point where it is saturated with ammonia, Qevap is the amount of heat absorbed by said cooling agent when it evaporates, and Qext is the amount of heat exchanged with the surroundings and is positive, if heat is removed from the process by external cooling, and negative, if heat is added to the process from the surroundings.
Abstract:
A process for the production of calcium bromide from feed brines, particularly from Dead Sea End Brine (EB), is described. The process comprises extracting the feed brine in countercurrent with a composite organic solvent; optionally, purifying the extract to increase the ratio Br:Cl by contacting it with a part of the product; and washing the purified extract with water to yield the product, that is an aqueous solution of CaBr2. The composite solvent comprises an anionic extractant, such as an amine or a mixture of amines; a cationic extractant, such as a carboxylic phosphoric or sulphonic acid or a mixtures of said acids; and diluent/modifier, which is an organic solvent. An apparatus for the production of calcium bromide is also described, which comprises: an extraction battery; optionally, a purification battery; and a washing battery, wherein at least one of the batteries comprises a plurality of stages.
Abstract:
The present invention is directed at a marine salt composition, suitable for simulating the marine environment, which composition comprises sodium chloride, magnesium chloride, anhydrous sodium sulfate, calcium chloride, potassium chloride, sodium bicarbonate and boric acid. The composition is substantially free of nitrate, nitrite, ammonia and phosphate ions. The magnesium chloride is present at 15-40 mesh and the calcium chloride is present at 20-50 mesh.
Abstract:
Spent potliner from an aluminum reduction cell is subject to an acid digest and the digest may be adjusted to produce a first gas component comprised of at least one material selected from the group consisting of silicon tetrafluoride, hydrogen fluoride, hydrogen cyanide gas and water vapor, and a slurry component comprised of at least one material selected from the group consisting of carbon, silica, alumina, and sodium, iron, calcium and magnesium compounds. The first gas component is removed from the digester and heated to a temperature sufficiently high to convert said silicon tetrafluoride to fumed silica and hydrogen fluoride. Thereafter, the fumed silica is separated from the hydrogen fluoride to recover fumed silica from spent potliner material.