Abstract:
The present disclosure includes structures and methods of forming structures for restricting out-of-plane travel. One example of forming such structures includes providing a first wafer 100, 220 comprising a bond layer of a particular thickness 101, 221 on a surface of a substrate material 105, 225, removing the bond layer 101, 221 in a first area 103-1, 103-2, 223 to expose the surface of the substrate material 105, 225, applying a mask to at least a portion of a remaining bond layer 109-1, 109-4, 229-1, 229-3 and a portion of the exposed surface of the substrate material in the first area 109-2, 109-3, 229-2 to form a second area exposed on the surface of the substrate material 105, 225, etching the second area to form a cavity 110, 230 in the substrate material 105, 225 and the bond layer 101, 221, and forming by the etching, in the cavity 110, 230, a structure 113-1, 113-2, 233 for restricting out-of-plane travel, where the structure 113-1, 113-2, 233 has a particular height from a bottom of the cavity 115, 235 determined by the particular thickness of the bond layer 101, 221.
Abstract:
A method of manufacturing a polarizer includes forming a first layer on a base substrate, forming a first partition wall layer on the first layer, forming a second partition wall layer on the first partition wall, forming a plurality of first partition wall patterns and a plurality of second partition walls disposed on the first partition wall patterns by etching the first partition wall and the second partition wall at the same time, forming a block copolymer layer on the first layer on which the plurality of first partition wall patterns are formed, forming a plurality of fine patterns from the block copolymer layer, and patterning the first layer using the fine patterns and the second partition wall patterns as a mask.
Abstract:
The claimed invention is directed to integrated energy-harvesting piezoelectric cantilevers. The cantilevers are fabricated using sol-gel processing using a sacrificial poly-Si seeding layer. Improvements in film microstructure and electrical properties are realized by introducing a poly-Si seeding layer and by optimizing the poling process.
Abstract:
A process for positive microcontact printing, including inking a patterned mold with a thiol; contacting the mold with a metal surface of a substrate; backfilling the metal surface with a solution containing an aromatic amine to form a backfilling layer; etching the metal surface of the substrate; and rinsing the substrate to remove the backfilling layer.
Abstract:
The claimed invention is directed to integrated energy-harvesting piezoelectric cantilevers. The cantilevers are fabricated using sol-gel processing using a sacrificial poly-Si seeding layer. Improvements in film microstructure and electrical properties are realized by introducing a poly-Si seeding layer and by optimizing the poling process.
Abstract:
A method is described for manufacturing a micromechanical structure, in which a structured surface is created in a substrate by an etching method in a first method step, and residues are at least partially removed from the structured surface in a second method step. In the second method step, an ambient pressure for the substrate which is lower than 60 Pa is set and a substrate temperature which is higher than 150° C. is set.
Abstract:
The present disclosure includes structures and methods of forming structures for restricting out-of-plane travel. One example of forming such structures includes providing a first wafer 100, 220 comprising a bond layer of a particular thickness 101, 221 on a surface of a substrate material 105, 225, removing the bond layer 101, 221 in a first area 103-1, 103-2, 223 to expose the surface of the substrate material 105, 225, applying a mask to at least a portion of a remaining bond layer 109-1, 109-4, 229-1, 229-3 and a portion of the exposed surface of the substrate material in the first area 109-2, 109-3, 229-2 to form a second area exposed on the surface of the substrate material 105, 225, etching the second area to form a cavity 110, 230 in the substrate material 105, 225 and the bond layer 101, 221, and forming by the etching, in the cavity 110, 230, a structure 113-1, 113-2, 233 for restricting out-of-plane travel, where the structure 113-1, 113-2, 233 has a particular height from a bottom of the cavity 115, 235 determined by the particular thickness of the bond layer 101, 221.
Abstract:
The present invention provides a method for preparing a micro-cavity array surface with an inclined smooth bottom surface based on an air molding method. The method includes: preparing a micro-cavity array surface; preparing an auxiliary microstructure polymer template, and performing plasma treatment on the auxiliary microstructure polymer template; uniformly spreading a layer of a liquid polymer film to be formed on the auxiliary microstructure polymer template subjected to the plasma treatment; placing a gap bead in an empty position on the micro-cavity array surface; placing the auxiliary microstructure polymer template spread with the liquid polymer film on the gap bead on the micro-cavity array surface, maintaining this state, and feeding the auxiliary microstructure polymer template into a vacuum drying oven; and heating and solidifying the liquid polymer film, and separating the micro-cavity array surface to obtain the micro-cavity array surface with the inclined smooth bottom surface.
Abstract:
A method of fabricating a wire grid polarizer includes sequentially depositing a conductive wire pattern layer, and a plurality of guide patterns which forms one or more trenches therebetween on the conductive wire pattern layer, hydrophobically treating surfaces of the conductive wire pattern layer exposed in the trenches, and the guide patterns, coating the hydrophobically treated conductive wire pattern layer in the trenches with a neutral layer to partially fill the trenches, filling a remainder of the trenches with a block copolymer of two monomers with different etching rates, aligning the block copolymer filled in the trenches, selectively removing blocks of one monomer among the two monomers from the aligned block copolymer, and patterning the conductive wire pattern layer by using blocks of the other monomer among the two monomers remaining in the trenches and the guide patterns as a mask.
Abstract:
A master tool is provided with an ink pattern on a major surface thereof. The ink pattern is formed by a screen printing process. A stamp-making material is applied to the major surface of the master tool to form a stamp having a stamping pattern being negative to the ink pattern of the master tool. The stamping pattern is inked with an ink composition and contacted with a metalized surface to form a printed pattern on a metalized surface of a substrate according to the stamping pattern. Using the printed pattern as an etching mask, the metalized surface is etched to form electrically conductive traces on the substrate.