Abstract:
A microelectromechanical device comprising a mechanical structure extending along a longitudinal direction, linked to a planar substrate by an anchorage situated at one of its ends and able to flex in a plane parallel to the substrate, the mechanical structure comprises a joining portion, which links it to each anchorage and includes a resistive region exhibiting a first and second zone for injecting an electric current to form a resistive transducer, the resistive region extending in the longitudinal direction from an anchorage and arranged so a flexion of the mechanical structure in the plane parallel to the substrate induces a non-zero average strain in the resistive region and vice versa; wherein: the first injection zone is carried by the anchorage; and the second injection zone is carried by a conducting element not fixed to the substrate and extending in a direction, termed lateral, substantially perpendicular to the longitudinal direction.
Abstract:
An ultra low power thermally-actuated oscillator and driving circuit thereof are provided. The ultra low power thermally-actuated oscillator includes proof masses, thermally-actuated element and a plurality of driving elements. The proof masses is symmetrically disposed and suspended from a substrate by spring structure. The thermally-actuated element is a line structure to effectively reduce the motional impedance and direct current power. Wherein, the thermally-actuated element is connected to the proof masses or the spring structure. The plurality of driving elements are respectively disposed on both sides of the thermally-actuated element to provide a driving current. When the driving current flows through the thermally-actuated element, the thermally-actuated element will be deformed and thus the proof masses will be driven to produce a harmonic oscillation.
Abstract:
A device includes a thermally deformable assembly accommodated in a cavity of the interconnection part of an integrated circuit. The assembly can bend when there is a variation in temperature, so that its free end zone is displaced vertically. The assembly can be formed in the back end of line of the integrated circuit.
Abstract:
A lithographically structured device has an actuation layer and a control layer operatively connected to the actuation layer. The actuation layer includes a stress layer and a neutral layer that is constructed of materials and with a structure such that it stores torsional energy upon being constructed. The control layer is constructed to maintain the actuation layer substantially in a first configuration in a local environmental condition and is responsive to a change in the local environmental condition such that it permits a release of stored torsional energy to cause a change in a structural configuration of the lithographically structured device to a second configuration, the control layer thereby providing a trigger mechanism. The lithographically structured device has a maximum dimension that is less than about 10 mm when it is in the second configuration.
Abstract:
A lithographically structured device has an actuation layer and a control layer operatively connected to the actuation layer. The actuation layer includes a stress layer and a neutral layer that is constructed of materials and with a structure such that it stores torsional energy upon being constructed. The control layer is constructed to maintain the actuation layer substantially in a first configuration in a local environmental condition and is responsive to a change in the local environmental condition such that it permits a release of stored torsional energy to cause a change in a structural configuration of the lithographically structured device to a second configuration, the control layer thereby providing a trigger mechanism. The lithographically structured device has a maximum dimension that is less than about 10 mm when it is in the second configuration.
Abstract:
Microelectromechanical (MEM) buckling beam thermal actuators are disclosed wherein the buckling direction of a beam is constrained to a desired direction of actuation, which can be in-plane or out-of-plane with respect to a support substrate. The actuators comprise as-fabricated, linear beams of uniform cross section supported above the substrate by supports which rigidly attach a beam to the substrate. The beams can be heated by methods including the passage of an electrical current through them. The buckling direction of an initially straight beam upon heating and expansion is controlled by incorporating one or more directional constraints attached to the substrate and proximal to the mid-point of the beam. In the event that the beam initially buckles in an undesired direction, deformation of the beam induced by contact with a directional constraint generates an opposing force to re-direct the buckling beam into the desired direction. The displacement and force generated by the movement of the buckling beam can be harnessed to perform useful work, such as closing contacts in an electrical switch.
Abstract:
The present invention relates to a design and microfabrication method for microgrippers that are capable of grasping micro and nano objects of a large range of sizes and two-axis force sensing capabilities. Gripping motion is produced by one or more electrothermal actuators. Integrated force sensors along x and y directions enable the measurement of gripping forces as well as the forces applied at the end of microgripper arms along the normal direction, both with a resolution down to nanoNewton. The microfabrication method enables monolithic integration of the actuators and the force sensors.
Abstract:
Apparatus including substrate, pusher assembly, and flexor assembly adjacent to pusher assembly. Pusher assembly includes hot and cold pusher arms. First ends of hot and cold pusher arms are anchored over substrate. Second ends of hot and cold pusher arms are coupled together and suspended for lateral displacement over substrate. Flexor assembly includes flexor arm, and conductor having actuator contact. First end of flexor arm is anchored over substrate. Pusher assembly is configured for causing lateral displacement of second end of flexor arm and of actuator contact over the substrate. Method includes providing apparatus and causing pusher assembly to laterally displace second end of flexor arm and actuator contact over substrate.
Abstract:
A micro rotary machine may include a micro actuator and a micro shaft coupled to the micro actuator. The micro shaft comprises a horizontal shaft and is operable to be rotated by the micro actuator. A micro tool is coupled to the micro shaft and is operable to perform work in response to motion of the micro shaft.
Abstract:
A thermal bend actuator (6) is provided with upper arms (23, 25, 26) and lower arms (27, 28) which are non planar, so increasing the stiffness of the arms. The arms (23, 25, 26, 27, 28) may be spaced transversely of each other and do not overly each other in plan view, so enabling all arms to be formed by depositing a single layer of arm forming material.