Abstract:
A method and a system that control a drive torque of a vehicle in which there is a change in a torque of a predetermined magnitude when drive power of the vehicle enters a zone in which a predetermined maximum output is generated to allow a driver to feel that the drive power of the vehicle enters the maximum output zone during traveling. The method may include calculating, by a controller, a drive request torque of a vehicle and calculating drive power displayed on a drive power gauge of an instrument cluster based on the calculated drive request torque. In addition, the method may include adding, by the controller, a predetermined additional torque to the drive request torque when the calculated drive power displayed on the drive power gauge enters a predetermined zone of the drive power gauge.
Abstract:
The invention relates to a self-propelling construction machine which has a chassis 1 which has wheels or crawler track units 1A, 1B. The construction machine according to the invention is distinguished by the fact that the gear mechanism system 6 for transmitting the drive power from the drive unit 5, which comprises at least one internal combustion engine 5A, to the working unit 4, which comprises at least one working assembly 4A, does not have a conventional clutch with which the working unit can be activated but instead has a hydrodynamic gear mechanism 10 which has a drive shaft 10A and an output shaft 10B. The construction machine has a control device 16 which is embodied in such a way that the drive power which is transmitted from the drive unit 5 to the wheels of the crawler track units 1A, 1B via the first power transmission line I is controlled in such a way that the rotational speed difference Δ=n1−n2 between the drive shaft and the output shaft of the hydrodynamic transmission of the second power transmission line II corresponds to a predefined value.
Abstract:
In the hybrid-type construction machine, the control unit (60) includes a drive distributing unit (60-8) and an output condition calculating unit (60-9). The output condition calculating unit (60-9) calculates output conditions inclusive of an output setting of the electric storage device determined from a state of charge of the electric storage device (58), an output setting of the engine determined from a number of revolutions of the engine (50), a hydraulic load required value indicative of drive power required by the oil pressure generating unit, and an electric load required value indicative of electric power required by the electric drive unit. The drive distributing unit (60-8) determines output values of the electric drive unit and the hydraulic drive unit based on the calculated output conditions.
Abstract:
A method for reducing fuel consumption of a work vehicle may include monitoring one or more loads associated with both a drive power requirement and a hydraulic power requirement for the work vehicle. In addition, the method may include actively adjusting one or more operating parameters of the work vehicle based on the monitored loads in a manner that meets the drive power requirement and the hydraulic power requirement for the work vehicle while reducing the fuel consumption of the vehicle's engine.
Abstract:
A vehicle includes and an engine, a motor, a transmission, and a controller. The transmission is configured is to receive power from the engine and the motor. The transmission is also configured to shift between gears based on a shift schedule. The controller is programmed to, in response to only the motor providing power to the transmission, adjust the shift schedule to narrow an operating speed range of the motor such that the motor speed maintains a peak range of an available motor power output.
Abstract:
A controller for a vehicle is provided. The vehicle includes an engine, a rotary machine, at least one driving wheel, a first clutch disposed between a power transmission member and the rotary machine, the power transmission member being disposed between the engine and the driving wheel, the first clutch being configured to be switched to an engaged state or a disengaged state, and a second clutch disposed in parallel with the first clutch, the second clutch being a one-way clutch. The controller includes an electronic control unit. The electronic control unit is configured to control at least one of the rotary machine or the first clutch so as to reduce inertia of the power transmission member based on a torsional load acting on the power transmission member.
Abstract:
The execution operation curve is set by switching from the EGR-off time operation curve to the EGR-on time operation curve when the EGR is started with the cooling water temperature being more than or equal to the first temperature, the execution operation curve is set by switching from the EGR-on time operation curve to the EGR-off time operation curve f when the cooling water temperature becomes smaller than the second temperature that is lower than the first temperature, and controls the engine. Accordingly, frequent changes of the execution operation curve are restricted. As a result, the operation state of the engine with the EGR performed as necessary is effectively prevented from becoming unstable further.
Abstract:
A vehicle includes and an engine, a motor, a transmission, and a controller. The transmission is configured is to receive power from the engine and the motor. The transmission is also configured to shift between gears based on a shift schedule. The controller is programmed to, in response to only the motor providing power to the transmission, adjust the shift schedule to narrow an operating speed range of the motor such that the motor speed maintains a peak range of an available motor power output.
Abstract:
A method and a system that control a drive torque of a vehicle in which there is a change in a torque of a predetermined magnitude when drive power of the vehicle enters a zone in which a predetermined maximum output is generated to allow a driver to feel that the drive power of the vehicle enters the maximum output zone during traveling. The method may include calculating, by a controller, a drive request torque of a vehicle and calculating drive power displayed on a drive power gauge of an instrument cluster based on the calculated drive request torque. In addition, the method may include adding, by the controller, a predetermined additional torque to the drive request torque when the calculated drive power displayed on the drive power gauge enters a predetermined zone of the drive power gauge.
Abstract:
A requested cruise-control horsepower calculator obtains a requested cruise-control horsepower from a speed difference between a target cruising vehicle speed and an actual vehicle speed. A requested cruise-control torque calculator obtains a requested cruise-control torque on the basis of the requested cruise-control horsepower and an engine rotation speed. A cruise-control accelerator-opening calculator sets a cruise-control accelerator opening by referring to an engine torque map in which a cruise-control accelerator-opening characteristic curve is set along an equal horsepower line on the basis of the requested cruise-control torque and the engine rotation speed. A target primary rotation-speed calculator sets a target primary rotation speed by referring to a shift-line map on the basis of the cruise-control accelerator opening and the actual vehicle speed. A shift controller obtains a target gear shift ratio on the basis of the target primary rotation speed and the actual vehicle speed so as to perform shift control.