Abstract:
Provided are: an on-press development type planographic printing plate precursor having a support, an image-recording layer, and an overcoat layer in this order, in which a content of an inorganic compound in the overcoat layer is zero or is more than 0% by mass or less than 1% by mass with respect to a total mass of the overcoat layer, and the image-recording layer contains an infrared absorber, a polymerization initiator, a polymerizable compound, and an oil agent; and a method of preparing a planographic printing plate and a planographic printing method in which the on-press development type planographic printing plate precursor is used.
Abstract:
Following cutting of a develop-on-press printing member, a treatment fluid having a pH greater than 6 is applied to one or both edges prior to its development and use in order to avoid ink lines during printing.
Abstract:
A color-forming composition contains (A) a radical generator, (B) a compound represented by the following formula (1) and (C) a binder polymer: wherein, in the formula (1), R1 represents a group which reacts with a radical generated from the radical generator (A) to be released and forms a dye after the release, and T represents a nitrogen-containing hetero ring.
Abstract:
A color-forming composition contains (A) a radical generator, (B) a compound represented by the following formula (1) and (C) a binder polymer: wherein, in the formula (1), R1 represents a group which reacts with a radical generated from the radical generator (A) to be released and forms a dye after the release, and T represents a nitrogen-containing hetero ring.
Abstract:
A method for producing a printable lithographic plate from a negative working, radiation imageable plate having an oleophilic resin coating that reacts to radiation by cross linking and is non-ionically adhered to a hydrophilic substrate. Steps include imagewise radiation exposing the coating to produce an imaged plate having partially reacted image areas including unreacted coating material, and completely unreacted nonimage areas; developing the plate by removing only the unreacted, nonimage areas from the substrate while retaining unreacted material in the image areas; and blanket exposing the developed plate with a source of energy which further reacts the retained unreacted material in the image areas. A plate with a coating containing resin particles can be imaged to produce initial cross-linking, then mechanically developed. Hardening of the imaged areas is completed with a relatively intense post-heating at 160 deg. C., which further cross links the monomer and fuses the resin particles.
Abstract:
A method for analyzing a mandrel (108) operation in an imaging device (100) includes installing the mandrel into the imaging device; securing the mandrel between a head stock (144) and a tail stock (104); attaching a first encoder (212) to the head stock and a second encoder (208) to the tail stock; rotating the mandrel; reading signals from first encoder; reading signals from second encoder; comparing the first results and the second results; and if the first results do not match with the second results stopping the imaging device.
Abstract:
A relief print master is created by a printhead that jets droplets of a polymerisable liquid on a cylindrical sleeve. The droplets follow a spiral path on the cylindrical sleeve. In a multiple printhead unit, there are different spiral paths associated with the different constituting printheads. The distance between these spiral paths is not even in a prior art system. By rotating the printhead under a specific angle, the distance between these spiral paths becomes even. The invention can also be used for the creation of other types of print plates, such as for example offset print plates.
Abstract:
A method and an apparatus for handling printing plates which are fed to at least two process stations, include at least one receiving deck on which the printing plates are provided and fed to the different process stations by pivoting the receiving deck. The receiving decks are pivoted first of all about a first rotational axis and likewise about a second rotational axis which is different than the first, in order to ensure favorable receiving angles between the receiving deck and the individual process stations in each case for the printing plate transfer. A printing plate exposer having an apparatus for handling printing plates, is also provided.
Abstract:
A method for preparing lithographic printing plates for on-press development, including sequentially feeding the plates to an imaging station to produce a plurality of latent image reference marks allocated among at least two margins along a respective two sides of the plate, and a latent print image within the margins. The imaged plates are transported from the imaging station to a plate bending station where the short ends of the plate are bent over. Between the imaging station and the bending station, the unimaged areas of the coating in at least two of the margins are removed to reveal the reference marks without developing the latent print image. Preferably, the reference marks are revealed while the plate is temporarily aligned in landscape orientation at stop, such as at the feeder to the bending station.
Abstract:
A method and an apparatus for handling printing plates which are fed to at least two process stations, include at least one receiving deck on which the printing plates are provided and fed to the different process stations by pivoting the receiving deck. The receiving decks are pivoted first of all about a first rotational axis and likewise about a second rotational axis which is different than the first, in order to ensure favorable receiving angles between the receiving deck and the individual process stations in each case for the printing plate transfer. A printing plate exposer having an apparatus for handling printing plates, is also provided.