Abstract:
A molding apparatus includes a movable molding surface with molding cavities, a pressure shoe with a stationary outer surface that defines in cooperation with the molding surface a pressure zone, and a resin source configured to introduce molten resin into the pressure zone to be forced into the molding cavities by pressure in the pressure zone. The molding surface is movable with respect to the pressure shoe to introduce molding cavities to the pressure zone to be filled with resin while the outer surface of the pressure shoe and the molding surface define in between an entrance gap of decreasing width upstream of the pressure zone. The outer surface of the pressure shoe is spaced from the molding surface in the pressure zone to define a minimum gap at which the outer surface of the pressure shoe has a slope parallel to the molding surface. The pressure shoe is adapted to be held in a flexed condition against resin in the pressure zone while forcing resin into the cavities, with the outer surface of the pressure shoe curved upstream of the pressure zone.
Abstract:
Arrays of male fastener elements are formed by molding preforms in cavities defined in one or more adjacent plates and shaped to mold preform arms that extend to a plate side, such as in a cross-machine direction of a continuous molding process. The preforms may be deformed to flatten their upper surfaces and lengthen the arms. Stems of preforms have molded side surfaces and each have width, measured in the longitudinal direction of the strip, that narrows with distance from the strip surface, and also narrows with distance from a parting line extending from the strip surface to the head between the arms.
Abstract:
The present disclosure includes a method to make 3D fibers products, prepregs and composites, by using fastening components cross plies, strands, and yarns.
Abstract:
A laminated touch fastener is made in a continuous process on a mold roll. Flowable resin is pressed against the mold roll in limited areas to form projections extending from resin layers that are laminated to a flexible substrate while carried on the mold roll. In one example a continuous channel about the mold roll is positioned such that the resin at least partially fills the channel as the layers are formed, thereby forming in the channel a raised portion in which the resin layer is of a greater thickness than at a point between the projections and the raised portion. In another example, grooves in the mold roll receive ribs of a pressure applicator during forming of the layers, the ribs blocking lateral flow of the resin to form a desired edge profile.
Abstract:
One-piece article obtained by injection moulding, with at least one injection point, said article comprising a main body (20), having a body volume defined by the space within a surface forming an outer envelope, and at least one hook (21), preferably a field of hooks, obtained from the same moulding of the main body of the moulded article, the hook or each hook haying a stem of longitudinal axis and a catching part projecting laterally from the stem, characterized in that the volume of the hooks is substantially smaller than the volume of the body, i.e. at least 100 times smaller, preferably at least 1000 times smaller, for example between 100 000 and 100 000 000 times smaller, than the volume of the body, and in that the width, or smallest transverse dimension, of the stems, measured transversely to the longitudinal axis, is smaller than the thickness of the main body, measured along the longitudinal axis of the stems.
Abstract:
A die comprising two die cavities, with each capable of supplying polymeric material, and a distribution plate interposed between at least a portion of each of the two die cavities. The distribution plate has a dispensing edge and a plurality of extrusion channels. First and second extrusion channels extend from entrance openings at the first and second die cavities, respectively, to exit openings on the dispensing edge. The exit openings of the first and second extrusion channels are disposed in alternating positions along the dispensing edge. A method of extruding with such a die and an extruded article made therefrom are also disclosed. The method includes co-extruding a first polymeric composition and a second polymeric composition. The extruded article comprises a plurality of longitudinal first stripes of the first polymeric composition alternating with a plurality of longitudinal second stripes of the second polymeric composition.
Abstract:
A method of making a structured surface is disclosed. The method includes providing a thermoplastic backing with multiple rows of upstanding elements. The upstanding elements include stems with proximal ends attached to the thermoplastic backing and distal caps, and each distal cap has an overhanging portion that extends beyond the stem in a first direction. For at least some of the multiple rows, an implement is passed between two adjacent rows, wherein the implement contacts the overhanging portion of at least some of the distal caps in the two adjacent rows such that at least part of the overhanging portion is turned in a second direction, different from the first direction. A structured surface that can be prepared by the method is also provided along with a fastening laminate that includes a carrier and the structured surface and an absorbent article that includes the fastening laminate. A tool useful for carrying out the method is also provided.
Abstract:
A method for producing a plastics product consisting of a support (30) having protruding stem parts (36) which have at their free end a head part (38) having a wider diameter compared with the respective stem part (36), wherein the stem parts and the head parts are formed in cavities (16) of a moulding screen (12) that are formed, on their sides facing away from the support (30), in a shaping zone of the moulding screen (12), is characterized in that the shaping zone is sealed off from the environment by means of a counter-surface (20) such that a predefinable amount of air enclosed in the shaping zone exerts a counter-pressure on the plastics material introduced into the respective cavity (16) of the shaping zone in order to support the shaping process.
Abstract:
Various embodiments include a male surface fastener member configured for being molded onto a surface of a foaming resin mold body. The male surface fastener member includes a plurality of male surface fastener strips connected with each other in an end-to-end relationship via a connecting portion that is integrally formed with at least the end portions of each male surface fastener strips. Each male surface fastener strip includes a base material having a first surface from which a plurality of engaging elements extend upwardly and first and second substantially lateral resin intrusion prevention walls that upwardly from the first surface along a width direction of the base material between the first and second longitudinal resin intrusion prevention walls. Each of the lateral resin intrusion prevention walls comprises a plurality of engaging elements that are arranged in series in a width direction of the first surface.
Abstract:
Touch fastener products, as well as apparatus and methods for manufacturing such products, are described. The methods and apparatus feature certain mold cavity shapes that are designed to facilitate demolding of hammer hook touch fastener elements exhibiting desirable fastening properties. Such mold cavity shapes can be combined with particularly soft molding resins to produce useful fastening products.