Abstract:
A method for forming a geomembrane liner testable for leaks by securing adjacent panels together with the conductivity of the lower surface of an overlying panel broken along a line adjacent the panel overlapping edge, and the overlapping edges sealed along the line. A heat welder has slots for the overlapping panel edges, with a heated wedge between the slots and having a projection to break the conductivity of the overlying panel bottom surface as it passes the wedge. The slots merge to press the liner edges together to heat weld them along the line of broken conductivity as the welder is moved along the panel edges.
Abstract:
Systems, methods, and apparatus for using aircraft bondline embedded current sensors to determine a lightning damage index are disclosed. A method of predicting lightning strike damage to at least one type of aircraft involves sensing, with at least one current sensor node embedded in at least one type of aircraft, induced current. The method further involves generating, with at least one current sensor node, at least one current signal representative of the induced current. Also, the method involves determining, electromagnetic density data associated with at least one region of at least one type of aircraft by using at least one current signal. Further, the method involves creating an index that provides a numeric representation for predicted lightning strike damage to at least one type of aircraft based on the electromagnetic density data, dimensions of at least one type of aircraft, and design features of at least one type of aircraft.
Abstract:
A system for monitoring electrical current passing through a cured bondline may include a current sensor network embedded in an adhesive layer of the cured bondline. The current sensor network may include a plurality of inductive coils and a plurality of current sensor nodes electrically interconnecting the inductive coils to form a plurality of current sensor loops generating induced current in response to a magnetic field associated with an electrical current passing through the adhesive layer. The current sensor nodes may generate current signals representative of the induced current. The current sensor network may include a digital data communications network located external to the cured bondline and receiving the current signals from the current sensor nodes and detecting and monitoring electrical current passing through the cured bondline based on the current signals.
Abstract:
A geomembrane liner for a containment system including liner panels and connected by a seam at overlapped edges, with the top panel having a conductive lower surface which is non-conductive across the seam. Heat welding of the seams is accomplished by a welder having a heating unit with a projection which interrupts the conductive lower surface of the top panel before forming the seam. Such seams may be used separately or selectively with a lined containment system having a plurality of liner panels covering at least a portion of the containment system bottom. The liner panels have a conductive lower surface and overlap with adjacent panels, and conductive members underlie adjacent panels and contact the conductive lower surface of both adjacent panels to provide an electrical connection between the conductive lower surfaces of the adjacent panels.
Abstract:
A transducer assembly is provided. The transducer assembly includes a magnetic portion, a body, a tensile pulse transmitter, and a pulse and current control unit. The magnetic portion is configured to provide a magnetic field. The body is disposed within an opening of the magnetic portion, and has a conductive portion configured to pass electric current near a body surface oriented toward the test surface. The tensile pulse transmitter is disposed within a cavity of the body and configured to transmit a tensile pulse into the test object. The pulse and current control unit is configured to control the tensile pulse transmitted by the tensile pulse transmitter, and to provide a current that passes through the conductive portion of the body and the test object, whereby a force urging the transducer assembly and the test object toward each other is generated responsive to the magnetic field and the current.
Abstract:
Method for connecting two intermediate products for forming a fiber composite product, wherein the two intermediate products respectively are composite fiber material with a layer of matrix material and reinforcing fibers extending therein by connecting areas that adjoin one another in an overlapping region of the interconnected intermediate products, with the method including applying an adhesive layer with an adhesive film with connecting particles onto the connecting areas of the intermediate products, arranging the second intermediate product on the first intermediate product or vice versa so the connecting areas at least partially overlap one another, and connecting the two intermediate products. A structural component is also disclosed with at least a first and a second fiber-reinforced intermediate product.
Abstract:
A sealed condition inspecting device comprising a support unit for supporting an element to be inspected for a sealed condition, a pair of electrodes in contact with the portion to be inspected of the element to be inspected and supported by the support unit, an electrical variable detecting unit for detecting an electrical variable in the portion to be inspected, and a sealed condition judging means for judging the acceptability of a sealed condition based on the electrical variable. In fact, since the acceptability of a sealed condition is judged based on an electrical variable in the portion to be inspected, whether or not a defective sealed condition has occurred can be determined independently of the subjectivity of the operator, whereby a sealed condition can be inspected for a sealed condition without unpacking them, not only inspection work can be simplified but reliability in the quality of an element to be inspected can be improved.
Abstract:
A transducer assembly is provided. The transducer assembly includes a magnetic portion, a body, a tensile pulse transmitter, and a pulse and current control unit. The magnetic portion is configured to provide a magnetic field. The body is disposed within an opening of the magnetic portion, and has a conductive portion configured to pass electric current near a body surface oriented toward the test surface. The tensile pulse transmitter is disposed within a cavity of the body and configured to transmit a tensile pulse into the test object. The pulse and current control unit is configured to control the tensile pulse transmitted by the tensile pulse transmitter, and to provide a current that passes through the conductive portion of the body and the test object, whereby a force urging the transducer assembly and the test object toward each other is generated responsive to the magnetic field and the current.
Abstract:
A geomembrane liner for a containment system including liner panels and connected by a seam at overlapped edges, with the top panel having a conductive lower surface which is non-conductive across the seam. Heat welding of the seams is accomplished by a welder having a heating unit with a projection which interrupts the conductive lower surface of the top panel before forming the seam. Such seams may be used separately or selectively with a lined containment system having a plurality of liner panels covering at least a portion of the containment system bottom. The liner panels have a conductive lower surface and overlap with adjacent panels, and conductive members underlie adjacent panels and contact the conductive lower surface of both adjacent panels to provide an electrical connection between the conductive lower surfaces of the adjacent panels.
Abstract:
The disclosure provides in one embodiment a system for monitoring adhesive integrity within a cured bondline of a bonded structural assembly. The system comprises a bonded structural assembly having a cured bondline. The cured bondline comprises an adhesive layer, a scrim ply layer integrated with the adhesive layer, and an electrical sensor network integrated with the scrim ply layer. The system further comprises an electrical power source for providing electrical power to the electrical sensor network. The system further comprises a digital data communications network for retrieving and processing data from the electrical sensor network. The electrical sensor network monitors adhesive integrity on demand by interpreting changes in local dynamic responses and electromechanical properties directly measured within the cured bondline.