Abstract:
A self-cleaning plasticizing venting and extruding apparatus by co-rotating non-twin multi-screws and a method thereof are provided, said apparatus comprises a screw mechanism, a barrel (1), a feeding port (2), a venting port (4), a discharging port (5), and a driving mechanism, said screw mechanism comprises non-uniform shaped central screw (6) and lateral screws (3,13), the axis of the central screw (6) is coincided with that of the barrel (1), and the lateral screws are provided on both sides of the central screw (6) respectively and engaged with the central screw (6); the contour lines of the threads of said central screw (6) and said lateral screws (3,13) are tangent to the inner wall of the barrel (1) ; and said driving mechanism is connected to the central screw (6) and the lateral screws (3,13) respectively. Each of the screws in the present invention uses an asymmetrical flow channel geometrical shape, so that the flow spaces for materials have an asymmetry, the compounding intensity and effectiveness are overall enhanced; the dispersion and mixing effects are extremely excellent, and a self-cleaning effect is generated, so that it is especially suitable for processing nano-materials in high yield.
Abstract:
A compound plant for processing elastomeric compounds for tires with both a high quality and a high throughput includes at least one batch mixing device in combination with at least one multi-shaft continuous mixing device having a high number of shafts. For example, the multi-shaft continuous mixing device could be a ring extruder having a plurality of co-rotating screws disposed to form a ring. In operation, a first elastomeric compound is discharged from the at least one batch mixing device and processed with the at least one multi-shaft continuous mixing device to obtain a second elastomeric compound.
Abstract:
The invention relates to a method for degassing elastomer-containing media, such as elastomer solutions and dispersions in particular, and degassing devices (1) for carrying out said method.
Abstract:
Described are methods for recycling biaxially oriented thermoplastic crystallizable films, such as polyester terephthalate (PET) films, that have been coated with various polymers or waxes that are immiscible in the primary molten thermoplastic. The resultant processed recycle can be used to make new biaxially oriented thermoplastic films while avoiding process instability and optical defects in the finished film associated with immiscible polymeric and/or wax coatings.
Abstract:
The invention relates to a method for degassing elastomer-containing media, such as elastomer solutions and dispersions in particular, and degassing devices (1) for carrying out said method.
Abstract:
A compound plant for processing elastomeric compounds for tires with both a high quality and a high throughput includes at least one batch mixing device in combination with at least one multi-shaft continuous mixing device having a high number of shafts. For example, the multi-shaft continuous mixing device could be a ring extruder having a plurality of co-rotating screws disposed to form a ring. In operation, a first elastomeric compound is discharged from the at least one batch mixing device and processed with the at least one multi-shaft continuous mixing device to obtain a second elastomeric compound.
Abstract:
An extruder for polymer melts, with an extrusion space arranged in an extruder barrel and through which at least one extruder screw shank extends so that it can be rotated by a motor. The screw shank has at least one section in the form of a cylinder casing, the extrusion space having at least one barrel section which surrounds the cylinder casing in an essentially equidistant manner to form an encircling gap as a restricted flow zone (blister), in particular to set the pressure of the melt. The clearance of the encircling gap at the restricted flow zone can be changed in a specifically selective manner by externally adjustable force, with elastic deformation of the inside surface of the extrusion space and/or of the surface of the screw shank, by a hydraulic pressure chamber provided in the region of the restricted flow zone in the wall of the barrel section and/or in the least one screw shank. The pressure chamber has on the side facing the extrusion space a considerably smaller wall thickness (membrane wall) in comparison with the wall thickness of the extrusion space. A hydraulic pressure unit supplies the force for the surface deformation.
Abstract:
An apparatus for the production of long-chain polymers, especially polyesters, is designed with several shafts arranged vertically in ring fashion inside a common housing, with parallel axes and driven in equal direction, each of which carries a number of disk-shaped processing elements arranged axially in a row and in parallel planes, with which adjacent shafts mesh, leaving narrow gaps of predetermined width. These processing elements together with the shafts enclose at least one cavity that is under negative pressure and in whose area the processing elements are arranged in such a way that their circumferential surfaces are exposed. To allow for the processing of material that forms a foam during expansion, the arrangement is designed in such a way that the housing has a tubular housing liner surrounding the shafts which with its cylindrical inner wall reaches tangentially to the circumferential surfaces of the processing elements of the shafts, leaving open a narrow gap of defined width, and which is rotatably mounted onto two coaxial stationary housing sections that seal and close off the ends of the housing liner. The housing liner is coupled with a drive arrangement that provides it with an oscillating rotational movement.
Abstract:
A self-cleaning plasticizing venting and extruding apparatus by co-rotating non-twin multi-screws and a method thereof are provided, said apparatus comprises a screw mechanism, barrel, feeding port, venting port, discharging port, and driving mechanism. Said screw mechanism comprises non-uniform central screw and lateral screws, the axis of the central screw coincides with the barrel, and the lateral screws are provided on both sides of the central screw and engaged with the central screw; the contour lines of the threads of said central screw and said lateral screws are tangent to the inner wall of the barrel; and said driving mechanism is connected to the central screw and lateral screws. Each screw-uses an asymmetrical flow channel shape, so the flow space is asymmetric, and the compounding intensity and effectiveness enhanced. The dispersion and mixing effects are excellent, generating a self-cleaning effect. The system is suitable for high yield nano-material processing.