Abstract:
The present invention relates to a manufacturing device for manufacturing a large amount of micro-scaffolds for a long period of time such that stable and uniform particles can be fabricated. The manufacturing device comprises: a first solution storage portion for storing a polymer support structure solution; a second solution storage portion for storing an emulsifier solution; a gas storage portion connected to each of the first solution storage portion and the second solution storage portion; a pressure control portion for controlling the pressure of the transporting gas flowing into the first solution storage portion and the second solution storage portion from the pressurization portion, respectively; a scaffold injector portion for receiving the polymer support structure solution and the emulsifier solution provided by the transporting gas, respectively; and a scaffold generating portion for receiving the scaffold dispersion discharged through the scaffold injection portion.
Abstract:
A system for continuously processing pulverulent products includes at least two system inlets for pulverulent products. A mixer is provided that continuously mixes the pulverulent products received at a mixer inlet into a product mixture that is dispensed at a mixer outlet. A production machine having a filling apparatus continuously processes the product mixture from the mixer outlet into end products dispensed at the machine outlet. A conveyor apparatus conveys the product mixture from the mixer outlet to the machine inlet. The conveyor apparatus includes a first fill level sensor that measures a product mixture fill level in the filling apparatus of the production machine and a second fill level measures a product mixture fill level in a conveyor reservoir. A control apparatus receives measurement data from the first fill level sensor and the second fill level sensor and controls at least one production parameter based on the measurement data.
Abstract:
[Problem to be Solved] After being filled into a mold, a mixed material will be cured while gradually foaming and expanding.[Solution] The equipment is provided with supply parts 1, 2 of two types of chemical liquids A, B and a mixer 3 for mixing two types of the chemical liquids supplied from the chemical liquid supply parts 1, 2. And, a storage tank 8 of gas which is to be dissolved in the stored chemical liquid A under pressure is connected to one of chemical liquid storage tanks, that is, the chemical liquid storage tank 4 at the chemical liquid supply part 1, in an instant when a mixed material of the chemical liquids A, B is externally discharged, a dissolved gaseous component is allowed to foam. Thereby, the soft mixed material before the curing reaction can be cured completely after being filled into a mold in a foaming and expanding state.
Abstract:
A method for preparing a PBAT laminated membrane composite material uses PBAT or a material with PBAT as the main component and other biodegradable plastic or superfine calcium carbonate in a mixture. The temperature of the mixture is increased by means of a lamination machine segment by segment, the material is heated slowly to a molten state, and the temperature of a rolling shaft is controlled by introducing cold water to the rolling shaft when the lamination machine conducts membrane lamination, so that the temperatures of rolling wheels and the laminated membrane are controlled.
Abstract:
The present invention relates to a device for manufacturing three-dimensional models by means of a 3D printing process, whereby a build platform for application of build material is provided and a support frame is arranged around the build platform, to which said support frame at least one device for dosing the particulate material and one device for bonding the particulate material is attached via the guiding elements and the support frame is moveable in a Z direction, which essentially means perpendicular to the base surface of the build platform. In so doing, the device provides a material feeding device having a particle material container to supply particulate material in batches from the storage area to the dosing apparatus and to do so with the least possible amount of shearing forces and without significant interaction with the atmosphere.
Abstract:
Molded rubber objects may be molded and de-molded by defining both a desired final form for the molded rubber object and a tab extending from the final form of the molded rubber object using a cavity in a mold. Rubber pellets may be dispensed in predetermined amounts at desired location(s) within the cavity to provide the rubber needed to form the molded rubber object. Heat and pressure may be applied to the mold to cause the rubber pellets to fill the cavity defining both the desired final form of the molded rubber object and the tab. After the heat and pressure has been applied, a gripping device may grasp the tab and move the tab in a direction and with sufficient force to peel the rubber object from the mold cavity. If desired, the tab may be removed from the molded rubber object.
Abstract:
Molded rubber objects may be molded and de-molded by defining both a desired final form for the molded rubber object and a tab extending from the final form of the molded rubber object using a cavity in a mold. Rubber pellets may be dispensed in predetermined amounts at desired location(s) within the cavity to provide the rubber needed to form the molded rubber object. Heat and pressure may be applied to the mold to cause the rubber pellets to fill the cavity defining both the desired final form of the molded rubber object and the tab. After the heat and pressure has been applied, a gripping device may grasp the tab and move the tab in a direction and with sufficient force to peel the rubber object from the mold cavity. If desired, the tab may be removed from the molded rubber object.
Abstract:
A casting apparatus is provided. The apparatus comprises a resin overflow container for use in casting processes, comprising: a curing accelerator for a resin in the overflow container. The resin overflow container may include a compartment arranged within the overflow container. The compartment may be adapted to release the curing accelerator after the overflow container has been at least partly filled with resin. The apparatus may also include a mould; and a drain connecting the mould and the overflow container or being part of an overflow container outlet for drawing off resin of the overflow container.
Abstract:
A method of accelerating a curing process in resin overflow systems for use in casting processes includes the step of adding a curing accelerator for the resin into the resin overflow system. In addition, a resin overflow container and a compartment with a curing accelerator for use in casting processes are provided.
Abstract:
A device for imparting vibrational energy to polymeric pellets in a feed path of an extruder is disclosed. The device includes a feed path vibrator having an elongate imparting portion for being disposed within the feed path of the extruder, and a transfer portion extending from the imparting portion. The transfer portion is configured for coupling to a source of vibration energy, and the elongate imparting portion includes at least one twisted portion along its length.