Abstract:
The invention related to an apparatus for recycling of lignocellulosic fibres from a fibreboard comprising compressed lignocellulosic fibres bonded together by a binding agent. The apparatus comprises a transport device arranged within a closed housing, wherein the housing is arranged for steaming pieces of the fibreboard at super-atmospheric pressure to decompress and release the lignocellulosic fibres by hydrating them, as well as hydrolysing the binding agent, and the transport device is arranged for transporting the fibreboard pieces, upon being steamed, from an inlet of the housing, at which the fibreboard pieces are fed to the housing, to an outlet of the housing, at which steamed portions comprising released lignocellulosic fibres exit the housing. Further, the apparatus comprises a steam generator in communication with the housing, whereby the fibreboard pieces may be steamed at super-atmospheric pressure in the housing to provide the steamed portions comprising released lignocellulosic fibres, an inlet pressure lock configured to receive the fibreboard pieces at atmospheric pressure and to deliver them to the housing, via the inlet, at super-atmospheric pressure, and an outlet pressure lock configured to receive steamed portions comprising released lignocellulosic fibres via the outlet and ejecting recycled lignocellulosic fibres during a sudden expansion of super-atmospheric pressure.
Abstract:
Provided is a sheet manufacturing apparatus that can suppress deposited material from wrapping onto a roller. A sheet manufacturing apparatus according to the invention includes: an air-laying unit that lays material containing fiber and resin; and a humidifying unit that humidifies the deposited material laid by the air-laying unit; the humidifying unit including a first air flow generator that generates air flow passing through the deposited material in a direction intersecting the support surface supporting the deposited material, and supplies droplets or humidified air to the deposited material by the air flow produced by the first air flow generator.
Abstract:
A sheet manufacturing apparatus that shortens the time until the apparatus stops is provided. The sheet manufacturing apparatus has a sieve unit having at least part of material defibrated in a defibration process introduced thereto, moving at a first speed, and passing defibrated material through multiple openings disposed in the main section thereof; and a forming unit forming a sheet using precipitate that past through the openings of the sieve unit; the sheet manufacturing apparatus stopping the sieve unit with defibrated material that was introduced stored inside the sieve unit when production by the sheet manufacturing apparatus stops.
Abstract:
Recycling of laminate flooring based on a separation of the panels (1) into particles which are connected with a binder and formed to a new sheet shaped material. A building panel includes a surface layer and a wood fiber based core, and the wood fiber based core includes aluminium oxide particles.
Abstract:
A wood-like molded product which is permitted to have wood-like features without using a natural wood material, and is usable as a bottle case to keep a wine bottle or the like inserted therein, and the like. The wood-like molded product includes: a cylindrical main body which is made of a mixed material containing: fine cellulose powder particles obtained from a wood material; and resin, and permits a bottle to be inserted thereinto; and a supporting member provided in the cylindrical main body, to support a bottom face of the bottle inserted in the cylindrical main body.
Abstract:
An environmentally friendly composite material for use in the manufacture of professional grade skateboard decks and other high quality equipment and sporting gear. In the one embodiment, a skateboard deck is manufactured from a composition of recycled hard rock maple wood fibers, a polyvinyl acetate adhesive, a cross-link catalyst and water. The malleable nature of the composite material prior to curing, allows the skateboard deck to attain virtually any desired shape. Differing composites and adhesives may be employed to achieve the a similar product when properly cured. Once cured, the composite material is light weight, strong, durable, and requires no lacquers or other sealers.
Abstract:
A composite board is made from waste medium density fiber (MDF) board or waste particle board that includes solid urea formaldehyde. The waste board is chopped and milled into particles having a size between 20 mesh and 150 mesh, creating a waste flour. After removing moisture from the waste flour, the dried waste flour is mixed with a thermoplastic to bind and encapsulate the waste flour. Internal lubricants are added to improve the flow characteristics of the blended material, and external lubricants are added to present sticking of the mixture to an extruder or mold. Mineral fillers are added to improve the flexural modules of the composite board, and a plasticizer can be added to improve the physical properties or mechanical characteristics of the mixture. An ultraviolet absorber, a biocide, and a pigment can also be added. The blended material is extruded or molded into a desired shape. When cooled, the thermoplastic hardens to form a solid composite board.
Abstract:
A method of making a biodegradable non-polluting product includes grinding an agricultural fibrous material to form a particulate material; preparing a binder by mixing formaldehyde with carboxymethyl cellulose and polyvinylalcohol; mixing the particulate material with a stearate and a sulfate to form a first mixture; adding the binder and water to the first mixture to form a second mixture; and forming the second mixture into the non-polluting product. The fibrous material may be an agricultural fibrous waste material. The products made by the method contain no toxic material.
Abstract:
A method of processing lingo-cellulosic material includes the steps of comminuting the material to a size that it can be processed in a hydrothermal pressure vessel, drying the material in moving air to obtain a specific moisture content, packing the material into the vessel and subjecting the material within the vessel to steam under pressure, decompressing the vessel to return the temperature and pressure to ambient and drying the product to specific moisture content; the product so formed can be used for injection moulding or to form panel boards and the like.
Abstract:
The structural member and fabrication thereof may be formed by mixing wood products chemically treated for durability and thermoplastics products. The fabrication process may included processing the products to a desired particle size; mixing the particles; processing the mixture in a high intensity processor and then processing the mixture in an extruder to obtain a molten state for forming the structural element in a mold. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a search or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.