Abstract:
The inventive device includes a work supporting portion for supporting a work rotatably about a first axis, a cutter supporting portion for supporting a cutter rotatably about a second axis different from the first axis and a moving portion for moving the cutter along a reference line extending through the first axis. The second axis is slanted relative to a reference plane oriented perpendicular to the first axis and a blade edge of the cutter is caused to come into contact with the work at an offset position offset from the reference line. The work and the cutter are driven in synchronism and the cutter is moved along the reference line.
Abstract:
A gear machining apparatus causes a machining tool and a workpiece to rotate at a high speed in synchronization with each other to machine a highly accurate gear through cutting. The machining tool is manufactured such that each of pitches between tool blades of the machining tool is an integer multiple of a pitch between teeth of the gear, the integer multiple being equal to or larger than double. By using the machining tool for cutting performed by the gear machining apparatus, the number of the tool blades of the machining tool, which are brought into contact with the workpiece at the same time, is reduced. Thus, it is possible to suppress occurrence of self-excited vibrations during cutting by reducing the cutting resistance. Thus, it is possible to enhance the tooth trace accuracy of the gear.
Abstract:
By combining shaping and milling actions, or smilling, the cutting tool can move through the entire usable portion of the spline and machine a tool relief into the face of the adjacent feature such as a shoulder before retracting, reversing direction, and repeating the cycle. The smilling apparatus and manufacturing method eliminates the need for an annular spline relief and the full length of spline engagement can be utilized for strength. The effective width of the spline connection apparatus manufactured by the smilling process conserves space and increases the load carrying capability of the spline connection.
Abstract:
The invention relates to a method for machining a tooth edge formed between a tooth flank and an end face (2b) of the workpiece tooth arrangement (3), by means of a tool tooth arrangement (13), in which method the tooth arrangements (3, 13) rotate about their respective tooth arrangement rotational axes (C, B) in mutual rolling coupling, wherein the two tooth arrangement rotational axes (C, B) are substantially parallel to each other and the machining is carried out over a plurality of workpiece rotations, and wherein a first relative movement (Z) between the workpiece tooth arrangement (3) and the tool tooth arrangement (13), parallel to the workpiece rotational axis, is carried out and the position of the envelope (28) of the tool tooth rolling positions (29i) is shifted relative to the engagement position of said envelope with the tooth flank of the workpiece tooth arrangement in the plane (X-Y) orthogonal to the workpiece rotational axis (C), transversely to the profile of the workpiece tooth arrangement, by means of a second relative movement (V), which in particular is varied according to the movement state of the first relative movement. The invention also relates to a chamfering tool, to a control program having control instructions for carrying out the method, and to a gear-cutting machine.
Abstract:
The present disclosure relates to a gear cutting machine for gear cutting a workpiece, in particular a toothed wheel, by form milling having at least one cutter head for mounting at least one end mill, wherein the cutter head or the end mill and/or the workpiece mount are adjustable and the end mill axis can be aligned approximately parallel to the machined tooth flank of the clamped workpiece, and wherein the cutter axis can be applied to the flank contour and the end mill has an outer contour corresponding to the flank contour.
Abstract:
A method for cutting teeth in workpieces, wherein, in a roughing operation, a substantially uncut blank receives rough teeth using a cutting tool having cutting teeth. Operation teeth are produced, the tooth width of which is defined by the spacing between the flanks of the teeth and is greater than the target dimension. In a subsequent deburring operation, a chamfer is incorporated into the end face edge of the tooth flanks, accompanied by the removal of an end face burr. Lastly, in a smoothing operation, the tooth width of the teeth is brought to the target dimension by machining the tooth flanks.
Abstract:
A method and apparatus for making a globoid screw for use as a mainrotor in a compressor or expander wherein a cylindrical rotor body is mounted for rotation about the longitudinal axis thereof, a cutter having a plurality of teeth at spaced locations around a circumference disposed in a plane and having an axis of rotation disposed perpendicular to that plane is mounted for rotation about its axis and is disposed so that the plane thereof is parallel to the rotor body longitudinal axis and so that the cutter rotational axis is perpendicular to the rotor longitudinal axis, and the rotor body and the cutter are rotated at synchronized speeds. The rotor body and cutter are positioned relative to each other in a manner moving the cutter axis of rotation and the rotor body longitudinal axis relative to each other to decrease the distance between the axes during rotation of the cutter and rotor body so that the cutter teeth contact the rotor body curing each cutter rotation to remove material from the rotor body by a milling action to form a globoid screw profile including a groove having a pair of spaced-apart sidewalls and extending along the rotor body in a helical path. The relative speed between the rotor body and the cutter is changed by a given amount for a given time to effect a positional change between the cutter teeth and the material of the rotor body thereby resulting in a desired change in the globoid screw profile.
Abstract:
A method and apparatus for making a globoid screw for use as a mainrotor in a compressor or expander wherein a cylindrical rotor body is mounted for rotation about the longitudinal axis thereof, a cutter having a pluality of teeth at spaced locations around a circumference disposed in a plane and having an axis of rotation disposed perpendicular to that plane is mounted for rotation about its axis and is disposed so that the plane thereof is parallel to the rotor body longitudinal axis and so that the cutter rotational axis is perpendicular to the rotor longitudinal axis, and the rotor body and the cutter are rotated at synchronized speeds. The rotor body and cutter are positioned relative to each other in a manner moving the cutter axis of rotation and the rotor body longitudinal axis relative to each other to decrease the distance between the axes during rotation of the cutter and rotor body so that the cutter teeth contact the rotor body during each cutter rotation to remove material from the rotor body by a milling action to form a globoid screw profile including a groove having a pair of spaced-apart sidewalls and extending along the rotor body in a helical path. The relative speed between the rotor body and the cutter is changed by a given amount for a given time to effect a positional change between the cutter teeth and the material of the rotor body thereby resulting in a desired change in the globoid screw profile.