Abstract:
Provided herein is a method of preparing a ceramic material, the method including: providing a ceramic gel including a plurality of metal salts and compressing the ceramic gel thereby inducing stress-induced mineralization of the ceramic gel and formation of the ceramic material, wherein the ceramic gel exists in isolated form.
Abstract:
A method for creating the colloidal analogs of atoms with valence: colloidal particles with chemically distinct surface patches that imitate hybridized atomic orbitals, including sp, sp2, sp3, sp3 d, sp3 d2 and sp3 d3. Functionalized with DNA with single-stranded sticky ends, patches on different particles can form highly directional bonds through programmable, specific and reversible DNA hybridization. These features allow the particles to self-assemble into ‘colloidal molecules’ with triangular, tetrahedral and other bonding symmetries, and should also give access to a rich variety of new microstructured colloidal materials.
Abstract:
A method and articles of manufacture for creating colloidal clusters and functionalized patchy particles. The method includes selecting at least one type of colloidal particle, functionalizing a patch of the colloidal particle and mixing a plurality of the colloidal particles to construct a cluster with particular desired geometries properties based on the bonding of the colloidal particles by virtue of the patch having bond-type characteristic analogous to, but not limited to atomic orbitals and other symmetries.
Abstract:
Overbased MgO dispersions with high magnesium content and acceptably low viscosities are prepared without gel formation by heating to 280-360° C. under high pressure in a sealed reactor a mixture of MgO, selected dispersants, low MW carboxylic acids, water and a hydrocarbon solvent having a boiling point below 280° C. No additional solubilizing or dispersing agents, promoters or reactants such as carbon dioxide, amines, alcohols etc are needed to obtain the desired dispersions. Compositions such as lubricating oils and fuels containing the overbased magnesium dispersions as additives are also disclosed.
Abstract:
Disclosed is a multifunctional colloidal nanocomposite derived from nucleophilic substitution-induced layer-by-layer assembly in organic media. The multifunctional colloidal nanocomposite includes: silica colloids coated with aminopropyltrimethoxysilane; and a plurality of nanoparticle layers highly densely adsorbed onto the coated silica colloids. The multifunctional colloidal nanocomposite has a highly dense multilayer structure in which 2-bromo-2-methylpropionic acid (BMPA)-stabilized quantum dot nanoparticles and an amine-functionalized polymer are adsorbed onto silica colloids using a nucleophilic substitution reaction-based layer-by-layer assembly method. Due to this structure, the multifunctional colloidal nanocomposite can be dispersed in various organic solvents, including polar and nonpolar organic solvents. In addition, the multifunctional colloidal nanocomposite can be utilized in various applications, such as nonvolatile memory devices, magnetic cards, and optical display films due to its strong magnetic and photoluminescent properties, high crystallinity and functional stability, and good superhydrophobicity. Further disclosed a method for preparing the multifunctional colloidal nanocomposite.
Abstract:
A hybrid film-forming composition is prepared by forming an aqueous mixture including an organofunctional silane, a metal chloride, and an acid, and boiling the mixture. A base is added to the aqueous mixture to substantially neutralize the mixture and to form a hydroxide of the metal. A colloidal suspension including the metal hydroxide and a siloxy compound is formed. A peroxide-based solution is added to the suspension to form a suspension including a peroxide of the metal. The suspension is allowed to equilibrate at room temperature. The suspension is boiled at a pressure greater than atmospheric pressure to form a hybrid film-forming composition including the condensation product of a siloxy compound and a metal peroxide. A coating formed from the hybrid film-forming composition may be hydrophobic or hydrophilic.
Abstract:
An improved process for converting an oil suspension of nanoparticles (NPs) into a water suspension of NPs, wherein water and surfactant plus salt is used instead of merely water and surfactant, leading to greatly improved NP aqueous suspensions.
Abstract:
Stable metal/conductive polymer composite colloids and methods for making the same are provided. The subject colloids find use in a variety of different applications, including analyte detection applications. Also provided are kits that include the subject colloids.
Abstract:
A method of producing an organic particle dispersion, which has: dissolving an organic material into a good solvent to form a solution, mixing the solution with a poor solvent for the organic material in which the poor solvent is compatible with the good solvent, to form organic particles of the organic material in a mixed liquid, and thereby preparing a dispersion in which the organic particles are dispersed, in which a polymer compound having a weight average molecular weight of 1,000 or more is contained when preparing the dispersion.
Abstract:
The invention relates to phase transfers of nanoparticles and to a catalysis using said nanoparticles. The aim of the invention is to facilitate a transfer of nanoparticles from an organic solution to an inorganic, especially, aqueous solution. To this end, a generically describable substance class, for example the commercially available 4-dimethylaminopyridine (DMAP), which is for example dissolved in water, is added to the organic solution in sufficient amounts. This measure has the effect that the nanoparticles are readily transferred in a one-step process from the organic phase (in each case in the top section) to the inorganic phase (in each case in the lower section) in the sample container.