Abstract:
Described are filtration membranes that include a porous fluoropolymer membrane and thermally stable ionic groups; filters and filter components that include these filtration membranes; methods of making the filtration membranes, filters, and filter components; and method of using a filtration membrane, filter component, or filter to remove unwanted material from fluid.
Abstract:
The disclosure describes a porous membrane including the following: at least one polymeric feature on a surface of a porous membrane wherein the at least one polymeric features are bonded to the membrane using a nanoscale injecting molding device. Another aspect of the disclosure includes a porous membrane including the following: a first film layer; a second film layer; at least one polymeric feature between the first film layer and second film layer, wherein the at least one polymeric feature is bonded to at least the first film layer.
Abstract:
A device, which is suitable for the processing of at least one fluid, is provided with at least one elongated foil, which is formed in a number of reciprocating foil layers. Between two opposite layers of foil, a spacer is situated that is permeable at least parallel to the foil layers. The foil layers and interposed spacers extend spirally around a central axis, wherein folding lines between two foil layers extend substantially parallel to the central axis. Each spacer is coupled to at least an end near the central axis with a support extending parallel to the central axis where, of the supports near the central axis, first supports are situated between two foil layers, which foil layers are connected to one another near the central axis, whereas second supports are situated between two successive first supports.
Abstract:
A liquid filter cartridge is provided. Preferred seal arrangements are provided, to provide for preferred axial load conditions, with respect to one or more of the end caps of the cartridge. Some cartridge configurations provided include no core structure or outer liner structure therein, to support axial load. Assemblies using the cartridge, and methods of assembly and use, are provided. The liquid filter cartridge can be a serviceable cartridge, or it can be retained permanently in a housing.
Abstract:
A method for producing a crystalline polymer microporous membrane, which contains: placing a first crystalline polymer in a metal mold, and compressing the first crystalline polymer to form a first preforming body; placing a second crystalline polymer in a metal mold, and compressing the second crystalline polymer to form a second preforming body; extruding each of the first preforming body and the second preforming body to form a first extrusion body and a second extrusion body, respectively; laminating the first extrusion body and the second extrusion body to form a laminate; rolling the laminate; heating a surface of the laminate to perform asymmetric heating to thereby give a temperature gradient in a thickness direction of the laminate; and drawing the laminate.
Abstract:
A method of making a composite filter media includes, in an exemplary embodiment, forming a nonwoven fabric mat that includes a plurality of synthetic fibers by a spunbond process, and calendaring the nonwoven fabric mat with embossing calendar rolls to form a bond area pattern comprising a plurality of substantially parallel discontinuous lines of bond area to bond the synthetic fibers together to form a nonwoven fabric, the nonwoven fabric having a minimum filtration efficiency of about 50%, measured in accordance with ASHRAE 52.2-1999 test procedure. The method also includes applying a nanofiber layer by electro-blown spinning a polymer solution to form a plurality of nanofibers on at least one side of the nonwoven fabric mat to form the composite filter media, the composite filter media having a minimum filtration efficiency of about 75%, measured in accordance with ASHRAE 52.2-1999 test procedure.
Abstract:
There is disclosed a vacuum filtration device for aqueous media that includes a hydrophilic tubular filter element in a cylindrical housing and at least one hydrophobic gas-permeable membrane, coupled with a gas bleed-off valve to allow the escape of air entrained in the filtration medium.
Abstract:
Expansion resistant filter cartridge assemblies are provided that facilitate filtering of strong solvent solutions. The filter cartridge assemblies generally include a cylindrical filter element defining an outer periphery, an inner periphery and opposed end surfaces, a perforated cage operatively associated with the outer periphery of the filter element, a perforated core operatively associated with the inner periphery of the filter element and having opposed ends and a predetermined length, and an end cap operatively associated with each of the opposed end surfaces of the filter element and bonded to each end of the core. The perforated cage generally includes an expansion region of about 2.5% to about 4% of the total length of the filter cartridge, e.g., a region of axial discontinuity or a plurality of angular struts, to accommodate swelling and/or dimensional expansion of the cage without adversely affecting the integrity of the filter cartridge assembly. Alternatively, an expandable net material may be provided to accommodate expansion/swelling thereof. The core of the filter cartridge assembly is advantageously fabricated from material(s) that resist swelling/expansion when exposed to strong solvent solutions, e.g., glass filled polypropylene, a fluorinated aliphatic hydrocarbon, a filled polyolefin polymer and/or a polymer that includes a functional filler, e.g., glass fiber, a mineral-based filler, talc or the like.
Abstract:
A filtering apparatus having a vessel and a filter made from fluororesin and treated before filtering operation by at least one of adding thermal treatment in gas or liquid and penetrating with fluid composed of hot water or steam at a temperature of less than melting point of the fluororesin.
Abstract:
A microfiltration filter cartridge which is excellent in a chemical resistance and a filtration stability and does not generate a toxic gas in a burning and discarding process and a method of manufacturing the microfiltration filter cartridge. The microfiltration filter cartridge comprises a micro-porous filtration membrane, supports, a core, an outer cover and end plates, all the components being formed of a polysulfone based polymer, wherein melting molding members in the component is subjected to annealing. Also in the use for the high temperature filtration of isopropanol in a semiconductor manufacturing process or the like, a crack is not generated on the component but a completeness thereof can be maintained suitably.