Abstract:
The preferred embodiment of the present invention is generally described as a lordotic pre-sacral rod implant, or implant construct, for use in association with spinal fusion procedures. In an embodiment, the lordotic pre-sacral rod implant incorporates a washer configured to press against the endplate of the L5 vertebral body and thereby force the vertebral bodies of the lumbosacral junction into a lordotic orientation.
Abstract:
Devices and methods for altering the spacing and motion at the facet joints of the vertebral column are provided. One embodiment of the invention comprises a prosthesis with surfaces configured to articulate with the facets of the facet joint. A retaining member for anchoring the prosthesis within the facet joint is optionally included. Methods for surgically and less invasively implanting the prosthesis and securing the prosthesis to the articular processes or surrounding soft tissue are also provided.
Abstract:
Tissue spacer implants and surgical methods for inserting the implants are disclosed. The implants may include a first cylindrical body with an outer surface, an axially extending hole, and a first end, a second cylindrical body with an outer surface and an axially extending hole, and an adjustment member with an outer surface, an axial hole, and at least one helical slot. The adjustment member axial hole may be adapted to receive the first cylindrical body and the adjustment member may be configured to be inserted into the axially extending hole of second cylindrical body. The implants may also include a travel mechanism for engaging the first cylindrical body, adjustment member, and second cylindrical body along the at least one helical slot to maintain a space between two bodies of tissue.
Abstract:
Tissue spacer implants and surgical methods for inserting the implants are disclosed. The implants may include a first cylindrical body with an outer surface, an axially extending hole, and a first end, a second cylindrical body with an outer surface and an axially extending hole, and an adjustment member with an outer surface, an axial hole, and at least one helical slot. The adjustment member axial hole may be adapted to receive the first cylindrical body and the adjustment member may be configured to be inserted into the axially extending hole of second cylindrical body. The implants may also include a travel mechanism for engaging the first cylindrical body, adjustment member, and second cylindrical body along the at least one helical slot to maintain a space between two bodies of tissue.
Abstract:
A facet joint replacement system includes an inferior implant with an inferior articular surface, a superior implant with a superior articular surface, and an optional crossbar. The inferior implant and the superior implant are each polyaxially adjustably connected to fixation elements which anchor the implants to adjacent vertebrae. The optional crossbar may be polyaxially adjustably connected to bilateral implants. The system components may be provided in kits which provide components of various sizes and shapes. A set of surgical instruments may facilitate implantation of the facet joint replacement system by providing tools for bone preparation, trialing, implant insertion, implant alignment, and lock-out of modular interconnections.
Abstract:
Superior and/or inferior facets of one or more facet joints may be replaced by superior and/or inferior facet joint prostheses. In one embodiment, a kit of superior or inferior prostheses is provided, in which the prostheses have at least two dimensions that vary among members of the kit independently of each other. Each prosthesis may have a bone engaging surface having a surface that is polyaxially rotatable against a corresponding resection of a vertebra. Each prosthesis may also have an articulating surface shaped such that, after attachment to the spine, the replaced or partially replaced facet joints provide a larger medial-lateral range of motion when the spine is flexed than when the spine is extended. Crosslinks may be used to connect left and right prosthesis together in such a manner that they are stabilized in a position in which they are seated directly against the vertebra.
Abstract:
Methods and devices are disclosed for treating the vertebral column. An integrated fixation plate and spacer having a retaining structure within the screw holes of the fixation plate to resist backout of screws attaching the fixation plate to the bone is provided. A movable joint may be provided between the fixation plate and spacer. In some embodiments, a screw hole insert is also provided to resist shear forces acting between the screw and fixation plate. In some embodiments, an integrated fixation plate and spacer system is provided, comprising two or more integrated fixation plate and spacer implants, wherein the fixation plates of each implant has a complementary configuration to allow attachment of the implants at adjacent intervertebral spaces. Alternative fixation systems are also contemplated.
Abstract:
Devices and methods for altering the spacing and motion at the facet joints of the vertebral column are provided. One embodiment of the invention comprises a prosthesis with surfaces configured to articulate with the facets of the facet joint. A retaining member for anchoring the prosthesis within the facet joint is optionally included. Methods for surgically and less invasively implanting the prosthesis and securing the prosthesis to the articular processes or surrounding soft tissue are also provided.
Abstract:
Arcuate fixation members with varying configurations and/or features are provided, along with additional components for use therewith in provided intervertebral implants. The arcuate fixation members may be of different lengths, cross sectional geometries, and/or cross sectional areas. Applications of intervertebral implants utilizing arcuate fixation members are particularly suitable when a linear line-of-approach for delivering fixation members is undesirable.
Abstract:
A spinal implant which is configured to be deployed between adjacent vertebral bodies. The implant has at least one extendable support element with a refracted configuration to facilitate deployment of the implant and an extended configuration so as to expand the implant and effectively distract the disc space, stabilize the motion segments and eliminate pathologic spine motion. The implant has a minimal dimension in its unexpanded state that is smaller than the dimensions of the neuroforamen through which it typically passes to be deployed within the intervertebral space. The implant is provided with a locking system having a plurality of linked locking elements that work in unison to lock the implant in an extended configuration. Bone engaging anchors also may be provided to ensure secure positioning.