Abstract:
A modem includes an LDPC encoder which utilizes a deterministic H-matrix, optionally via a generation matrix, to generate redundant parity bits for a bit block. Ones are placed into the H-matrix in a completely diagonal manner with diagonals subdivided into sets of diagonals. The first diagonal in each set i begins with coordinates H(1,k), where k=(1+(i*Mj)). The remaining diagonals in the sets are offset from the first diagonals so that the column distances between any two pairs of diagonals is unique. In another embodiment, the H-matrix is determined by assigning “1s” in a first column, and then assigning “1s” of subsequent columns deterministically by causing each “1” in a previous ancestor column to generate a “1” in the next descendant column based on the rule that a descendant is placed one position below an ancestor except where rectangles would be generated. Interrupted descending diagonals are generated.
Abstract:
Apparatus, methods and systems for frequency offset compensation in multipoint-to-point orthogonal frequency division multiplexing (OFDM) systems are provided. In the hub, frequency offset estimates are made in the frequency domain for each group of carriers of the OFDM system. The hub then transmits indications (parameters) of the frequency offset for each group of carriers to the nodes. Frequency offset compensation is then accomplished in each node, preferably in the time domain.
Abstract:
An easily implementable soft decision decoding (SDD) metric is provided for telecommunications systems and apparatus. The SDD metric is based on weighted average distances or weighted minimum distances between scaled received signals and all reference signals related to the corresponding binary symbol. An important property of the SDD metric of the invention is that the distance weight is completely defined by the received signal scaling factor which is readily available as a result of conventional frequency domain equalization procedures. The invention is particularly advantageous in wireless systems having variable parameters such as wireless OFDM systems with selective fading.
Abstract:
A pulse amplitude modulated (PAM) mapper includes a constellation matrix memory which stores indications of a plurality of different constellations, wherein at least one of the different stored constellations is of different dimension than another of the stored constellations. The constellations are used individually or together to support a plurality of different modem data rates. In a preferred embodiment, in addition to the constellation matrix memory, the mapper includes a logic block, a constellation controller, a PAM code generation block, and an output register. The logic block receives incoming bits of information, groups the bits as a function of the desired or agreed upon bit rate as indicated by the constellation controller, and provides a plurality of each group of bits to the PAM code generation block, and one or more sign bits to the output register. The PAM code generation block uses the provided bits to choose at least one point from one of the constellations, and uses each chosen constellation point to generate a seven-bit PAM code (typically .mu.-law or A-law code value) word. Each seven-bit output is provided to the output register, and together with associated sign bits generates output bytes. Algorithms are provided for choosing multiple points from the 2D and higher dimensional constellations from provided groups of bits.
Abstract:
Methods, apparatus and systems for implementing an algorithm for N-symbol noncoherent processing of M-ary DPSK signals in a pilotless, wireless system is provided. The algorithm is carried out with (N−1) recurrent steps (iterations) plus a decision step. Each iterative step includes simple trigonometrical transformation of quadrature components of the current symbol and summation of the transforms with results of the previous step. A final N-symbol decision regarding the current transmitted symbol corresponds to the vector of maximum length, calculated after the (N−1)-th step of the iterative procedure. The general algorithm is optionally implemented with one or more intersymbol processors, one or more memory blocks for saving results of the intersymbol processors, and a decision block. In addition, shift registers for quadrature components of the received signal may be utilized.
Abstract:
Methods, apparatus, and systems for mode assignment and mode adaptation to channel conditions are provided which are based on estimations of real signal-to-noise ratios (SNR) for each frequency carrier bearing information during a data transmission session. The invention utilizes two principal procedures: signal-to-noise ratio (SNR) estimation, and a corresponding mode assignment. SNR estimation is obtained by an averaging of squared Euclidean distances between normalized received signals and reference signals corresponding to either current hard decisions from the output of a demodulator or soft decisions provided by a decoder, for each frequency carrier bearing random information. Using the SNR estimations, various algorithms for determining mode assignment are provided.
Abstract:
The receiver of a PCM modem utilizes the V.90 TRN1d training signal for detecting whether any of the six slots of the received signal may be subject to alternating robbed bit signaling (ARBS), and what the alternating robbed bit signaling pattern may be. This is accomplished by accumulating the received level over a plurality of frames for each slot and by comparing the received levels for each slot to an average level for that slot. If the difference between the received levels and the average levels exceeds a threshold, the slot is determined to be subject to ARBS. Where a slot is subject to ARBS, DIL sequence signals for frames of the alternating robbed bit signaling slot having LSB=0 and LSB=1 are accumulated separately (if available) in order to generate two translation tables (TRT0, TRT1) for that slot. Where the DIL sequence is found only in the frames having the alternating robbed bit signaling slot having LSB=0 or having LSB=1, only one translation table can be generated. Different algorithms are provided for designing a constellation for the alternating robbed bit signaling slot depending on (a) whether two translation tables were generated for the slot, (b) whether the frame-to-TRT correspondence is known, and (c) where only one translation table is generated, whether the translation table generated was TRT0 or TRT1.
Abstract:
Methods are provided for determining whether any slots of a modem frame are subject to robbed bit signaling (RBS), and whether the robbed bit signaling is &bgr;-codec robbed bit signaling. From an obtained DIL sequence, an ordered table of level values for each slot is generated. In determining whether any slots are RBS slots, distances between adjacent levels of the table for each slot are obtained and are compared to a “zero distance” threshold value in order to determine the number of distances which exceed the “zero distance” value. For each slot, the number of zero distances are compared to a threshold value, and if the number of zero distances exceeds the threshold value, the slot is declared to be a RBS slot. Zero distance thresholds for each slot are generated by finding a function of a maximum distance for that slot among the adjacent levels. In determining whether any RBS slots are &bgr;-codec slots, distances are found between corresponding levels of the ordered tables. If substantially more than half of the distances from one slot to the others are found to be greater than a zero distance threshold value, the slot is determined to be a &bgr;-codec slot.
Abstract:
A two-level or three-level probing signal is generated by a transmitter for transmission over a channel and for detection and analysis by a receiver. The two-level probing signal is a signal having a first PCM .mu.-law level over a first frame, and a second PCM .mu.-law level over a second frame. The two-level probing signal when combined with detection and analysis is generally sufficient for determining the presence and order of RB-signaling and PAD attenuation, and the extent of PAD attenuation may also be determined. The three-level probing signal is similar to the two-level probing signal but includes a third .mu.-law level over a third frame. A preferred two-level probing signal is a signal having a PCM .mu.-law level of .+-.975 for a first frame, and a signal having a PCM .mu.-law level of .+-.1023 for a second frame (or vice versa), although other sets of signals such as .+-.1087 and .+-.879 can be utilized. One preferred three-level probing signal is a signal having a PCM .mu.-law level of .+-.975 for a first frame, and a signal having a PCM .mu.-law level of .+-.1023 for a second frame, and a signal having a PCM .mu.-law level of .+-.1151 for a third frame, although other sets of signals (e.g., 911, 943, and 1151; 943, 975 and 1151; 911, 975, and 1151) can be utilized. At the receiver, the received signals are compared to a set of predetermined threshold values, and based on those comparisons, decisions as to the presence and order of RB-signaling and PAD attenuation are made.
Abstract:
Systems, methods and apparatus are provided for equalizing a received multicarrier wireless telecommunications data signal. The wireless signal includes data without accompanying pilot signals, and equalization is accomplished by extracting information from the data, by processing the information in order to obtain equalization indications, and by equalizing the multicarrier wireless telecommunications data signal by modifying indications of the wireless telecommunications data signal using the equalization indications.