摘要:
A controller for controlling a needle valve of a spring closing type fuel injector includes a fluid assist selectively exerting a force on the needle valve, the force acting in cooperation with a bias exerted by a return spring on the needle valve to effect a relatively low valve opening pressure of the needle valve and relatively very high valve closing pressure. A spring closing type fuel injector and a method for controlling a needle valve of a spring closing type fuel injector are further included.
摘要:
A delay device for use with a fuel injector, the fuel injector having an electric controller for controlling the flow of a high pressure actuating fluid responsive to initiation and cessation of a pulse width command, the pulse width command defining the duration of an injection event, and an intensifier being in fluid communication with the controller, the intensifier being translatable to increase the pressure of a volume of fuel for injection into the combustion chamber of an engine; the delay device includes an apparatus, shiftable between a first disposition and a second disposition over a certain period of time after initiation of the pulse width command, the period of time effecting a delay in initiation of fuel injection after initiation of the pulse width command. A fuel injector including a delay device. A method of controlling a fuel injection event, includes the steps of flowing an actuating fluid from the controller to an intensifier responsive to a pulse width command, pressurizing a volume of fuel by means of the intensifier, flowing a high pressure fuel from the intensifier to an injector nozzle, and interposing a delay in at least a portion of the flow of fuel to the injector nozzle.
摘要:
A compression ignition engine (10) has a control system (40), one or more combustion chambers (12), and fuel injectors (42, 44) for injecting fuel into the combustion chambers. The control system controls fueling using a result of the processing of engine speed and engine load to select a particular domain for engine operation (HCCI, HCCI+CD, or CD,—FIG. 1). When the processing selects HCCI, the engine is fueled to cause alternative diesel combustion (such as HCCI) in all combustion chambers. When the processing selects CD, all combustion chambers are fueled for conventional diesel combustion. When the processing selects HCCI+CD, a first group of combustion chambers are fueled for HCCI combustion and a second group for CD combustion. Each group (G1, G2) has its own EGR valve (34, 38) and turbocharger (22, 24).
摘要:
An engine system (100) has a valve system (137). An inlet of a turbine (109) is fluidly connected to a first inlet (119) of the valve system (137). An outlet of the turbine (123) is fluidly connected to a second inlet (113) of the valve system (137). An outlet of a compressor (155) is fluidly connected to a first outlet (115) of the valve system (137). An inlet of the compressor (141) is fluidly connected to a second outlet (111) of the valve system (137). An inlet of an exhaust gas recirculation system (133) is fluidly connected to a third outlet (121) of the valve system (137), and an outlet of the exhaust gas recirculation system is fluidly connected to a third inlet (117) of the valve system (137).
摘要:
A compression ignition engine (20) has a control system (26) for processing data, one or more combustion chambers (22), and fuel injectors (24) for injecting fuel into the combustion chambers. The control system controls fueling using a result of the processing of certain data, such as engine speed and engine load, to select one of two fueling modes (HCCI, HCCI-CD) for operating the engine. When the result of the processing selects the HCCI mode, the engine is fueled to cause homogeneous-charge compression-ignition (HCCI) combustion within the combustion chambers. When the result of the processing selects the HCCI-CD mode, the engine is fueled to create a substantially homogeneous combustible charge within each combustion chamber that is compressed to auto-ignition, and after auto-ignition, more fuel is injected to provide additional combustion in the manner of the conventional diesel combustion.
摘要:
An engine (10) utilizes “regular EGR cooling” when operating in HCCI mode at loads within a low load range (56, 58, 60) and “enhanced EGR cooling” that allows the engine to continue to operate in HCCI mode when engine load increases beyond loads in the low load range (64, 66, 68). When engine load increases further to a point where it enters a high load range, the combustion mode changes over to conventional diesel combustion, and exhaust gas recirculation reverts to “regular EGR cooling” (70, 72, 74).
摘要:
A flow controller assembly for use with a hydraulically-actuated, electrically-controlled fuel injector, includes a flow controller fluidly disposable intermediate an injector control valve assembly and an injector intensifier assembly for controlling flow of actuating fluid to and from the intensifier assembly to effect rate shaping of an injectable quantity of fuel and to effect a reduction of noise generated by the stopping of return motion of an intensifier piston. A fuel injector and a method of controlling an intensifier piston are also included.
摘要:
The control system controls lean-rich modulation of fueling using a set of engine specific fueling parameter maps. One set of maps is a set of lean fueling maps, and another set is a set of rich fueling maps. The two map sets each comprise a fuel injection pressure map, an EGR valve opening map, and a VGT valve opening map, established for the particular diesel engine, with neither form of modulation requiring post injection. The strategy is represented by a flow diagram and is useful in regenerating an NOx adsorber catalyst in the engine exhaust system in a manner that controls torque so that the regeneration process is transparent to the operator of the vehicle, while producing significant fuel savings.
摘要:
A compression ignition engine (20) has a control system (26) for processing data, one or more combustion chambers (22), and fuel injectors (24) for injecting fuel into the chambers (22). The control system (26) controls fueling using a result of the processing of certain data, such as engine speed and engine load, to select one of three fueling modes (HCCI, HCCI+CD, CD) for operating the engine (20). When the result of the processing selects the HCCI mode, the engine (20) is fueled to cause homogeneous-charge compression-ignition (HCCI) combustion in all combustion chambers (22). When the result of the processing selects the HCCI+CD mode, the engine (20) is fueled to cause HCCI combustion in some chambers (22) and CD (conventional diesel) combustion in the remaining chambers (22). When the result of the processing selects the CD mode, the engine (22) is fueled to cause CD combustion in all chambers (22).
摘要:
An engine system (100) has a valve system (137). An inlet of a turbine (109) is fluidly connected to a first inlet (119) of the valve system (137). An outlet of the turbine (123) is fluidly connected to a second inlet (113) of the valve system (137). An outlet of a compressor (155) is fluidly connected to a first outlet (115) of the valve system (137). An inlet of the compressor (141) is fluidly connected to a second outlet (111) of the valve system (137). An inlet of an exhaust gas recirculation system (133) is fluidly connected to a third outlet (121) of the valve system (137), and an outlet of the exhaust gas recirculation system is fluidly connected to a third inlet (117) of the valve system (137).