摘要:
Techniques and devices for depolarizing light and producing a variable differential group delays in optical signals. In one implementation, an input optical beam is split into first and second beams with orthogonal polarizations. One or two optical reflectors are then used to cause the first and second optical beams to undergo different optical path lengths before they are recombined into a single output beam. An adjustment mechanism may used implemented to adjust the difference in the optical path lengths of the first and second beams to produce a variable DGD. When the depolarization of light is desired, the difference in the optical path lengths of the first and second beams is set to be greater than the coherence length of the input optical beam.
摘要:
Techniques and devices for depolarizing light and producing a variable differential group delays in optical signals. In one implementation, an input optical beam is split into first and second beams with orthogonal polarizations. One or two optical reflectors are then used to cause the first and second optical beams to undergo different optical path lengths before they are recombined into a single output beam. An adjustment mechanism may used implemented to adjust the difference in the optical path lengths of the first and second beams to produce a variable DGD. When the depolarization of light is desired, the difference in the optical path lengths of the first and second beams is set to be greater than the coherence length of the input optical beam.
摘要:
Techniques and devices for depolarizing light and producing a variable differential group delays in optical signals. In one implementation, an input optical beam is split into first and second beams with orthogonal polarizations. One or two optical reflectors are then used to cause the first and second optical beams to undergo different optical path lengths before they are recombined into a single output beam. An adjustment mechanism may used implemented to adjust the difference in the optical path lengths of the first and second beams to produce a variable DGD. When the depolarization of light is desired, the difference in the optical path lengths of the first and second beams is set to be greater than the coherence length of the input optical beam.
摘要:
Techniques and devices for depolarizing light and producing a variable differential group delays in optical signals. In one implementation, an input optical beam is split into first and second beams with orthogonal polarizations. One or two optical reflectors are then used to cause the first and second optical beams to undergo different optical path lengths before they are recombined into a single output beam. An adjustment mechanism may used implemented to adjust the difference in the optical path lengths of the first and second beams to produce a variable DGD. When the depolarization of light is desired, the difference in the optical path lengths of the first and second beams is set to be greater than the coherence length of the input optical beam.
摘要:
Techniques and devices for depolarizing light and producing a variable differential group delays in optical signals. In one implementation, an input optical beam is split into first and second beams with orthogonal polarizations. One or two optical reflectors are then used to cause the first and second optical beams to undergo different optical path lengths before they are recombined into a single output beam. An adjustment mechanism may used implemented to adjust the difference in the optical path lengths of the first and second beams to produce a variable DGD. When the depolarization of light is desired, the difference in the optical path lengths of the first and second beams is set to be greater than the coherence length of the input optical beam.
摘要:
The present invention provides a device, a method of making the device, and a system incorporating the same. In one embodiment, the device includes a substrate that has first and second opposing surfaces and first and second thicknesses, wherein the second thickness is less than the first thickness, and the first surface is substantially planar. The device further includes a conductive trace having an input end and an output end and located over the first surface of the substrate, wherein at least one of the input end or output end is aligned with the second substrate thickness.
摘要:
Devices and techniques for monitoring spectrum of light. For example, a fiber spectral monitoring device and associated technique are described for monitoring spectral information in light based on an interferometer design.
摘要:
The present invention provides an optoelectronic device, a method of manufacture therefore, or an optical communications system including the optoelectronic device. The optoelectronic device may include a substrate and a waveguide located within the substrate. Additionally, the waveguide may include a first portion having a width, depth, and refractive index, and a second portion having a different width, depth and refractive index.
摘要:
Disclosed is a turbocharger with a dual-blade nozzle system, comprising a turbine housing, a fixed nozzle ring (1), a linearly moving nozzle disk (2), a mid-housing (5), a rack (4), rocker arm rods (3), and a gear (6), wherein airfoil-shaped fixed blades (8) are provided on the front end face of the fixed nozzle ring (1), with blade-type holes (9) provided between the fixed blades (8), and the fixed nozzle ring (1) is sheathed around the outside of the mid-housing (5) and fixed to the mid-housing (5) via screws; the linearly moving nozzle disk (2) is provided on the rear end of the fixed nozzle ring (1), a group of moving blades (7) is provided on the front end face of the linearly moving nozzle disk (2), the moving blades (7) are movably inserted into the blade-type holes (9), the rear end face of the linearly moving nozzle disk (2) is fixedly connected to two rocker arm rods (3), with the rocker arm rods (3) inserted into the mid-housing (5) and engaged with the rack (4) via the gear (6). The provision of an additional blade along a nozzle flow passage in the turbocharger with the dual-blade nozzle system can not only reduce the cross-sectional area of the passage, but also separate the original nozzle into two gas passages to reduce the loss of gas flow due to transverse flow; in addition, the gas flow can flow at an optimum gas flow angle according to the original design, so that the turbine can keep working in the high efficiency region.
摘要:
Techniques and systems for dynamically controlling polarization of an optical signal by using various feedback controls, and by combining both feed-forward and feedback controls. Various dynamic control algorithms for such systems and other optical systems have been disclosed.