Abstract:
Allogenic or xenogenic materials are used to provide intervertebral disc nucleus implants and/or annular plugs. The allogenic or xenogenic materials comprise natural disc annulus material, which may have a portion of the anterior longitudinal ligament attached. The tissue may be used “as is” without an additional core or covering, or it may be used in combination with other materials. The material may be rolled, folded, layered and/or sutured, stapled, or glued to provide a solid plug of natural biological material. The implant may be provided as a dehydrated, substantially rod-shaped segment having a diameter less than the diameter of the hydrated material, and may have one or more ends of the dehydrated rod terminate with a further reduced diameter portion, preferably a point.
Abstract:
A drug-eluting device comprising a drug-eluting matrix containing at least one elutable drug, a method of manufacturing a preformed drug-eluting device, and an implant kit comprising the same.
Abstract:
Allogenic or xenogenic materials are used to provide intervertebral disc nucleus implants and/or annular plugs. The allogenic or xenogenic materials comprise natural disc annulus material, which may have a portion of the anterior longitudinal ligament attached. The tissue may be used “as is” without an additional core or covering, or it may be used in combination with other materials. The material may be rolled, folded, layered and/or sutured, stapled, or glued to provide a solid plug of natural biological material. The implant may be provided as a dehydrated, substantially rod-shaped segment having a diameter less than the diameter of the hydrated material, and may have one or more ends of the dehydrated rod terminate with a further reduced diameter portion, preferably a point.
Abstract:
A drug-eluting implant cover fabricated from a drug-eluting biocompatible matrix containing at least one elutable drug, a drug-eluting implant cover kit containing at least one drug-eluting implant cover, and a method of manufacturing the same.
Abstract:
Materials and methods for repairing or replacing an intervertebral disc or disc nucleus using natural biological tissue. The tissue may be used alone without an additional core material, or it may be used to encapsulate an elastomeric or hydrogel core. When used alone the tissue may be rolled, folded, braided, or layered to provide a solid plug of natural biological material. When used to encapsulate an elastomeric or hydrogel core the tissue acts as a constraining jacket to support the core. The natural tissue implants may further include a drawstring to assist in folding the implant when the device is implanted in an intervertebral disc space. Multiple units of the natural tissue implants may be used together.
Abstract:
A drug-eluting device comprising a drug-eluting matrix containing at least one elutable drug, a method of manufacturing a preformed drug-eluting device, and an implant kit comprising the same.
Abstract:
An anterior spinal plate has affixed to at least a portion of a surface thereof at least one preformed drug-eluting device fabricated from a drug-eluting matrix containing at least one elutable drug.
Abstract:
A spinal construct for implantation in a patient to provide stabilization to spinal structure with improved load sharing includes a flexible spinal rod having a first end and a second end, the spinal rod being configured to provide stabilization to spinal structure. It also includes a first bone fastener configured to securely attach to the flexible spinal rod and a second bone fastener configured to securely attach to the flexible spinal rod. The second bone fastener is a dynamic fastener arranged to provide motion in one direction more than another direction. The flexible spinal rod and the second bone fastener are oriented to cooperate in a manner that achieves load sharing by dynamically flexing under applied loads in a manner that distributes stresses and strains between the flexible spinal rod and the second bone fastener.
Abstract:
Embodiments of the invention relate to a curable nucleus pulposus implant having water absorption and swelling capabilities, compositions for producing the curable nucleus pulposus implants, and methods of using the curable nucleus pulposus implants. The curable nucleus pulposus implant can be created from a polymer blend composition comprising a ratio of a curable material and at least one hydrophilic polymer. The resulting polymer blend composition may be used to generate curable nucleus pulposus implants to treat a number of disease and/or disorders, such as herniated discs. The curable nucleus pulposus implants may further contain polyelectrolytes and elastomer compounds, as well as pharmacological and biological agents.
Abstract:
The embodiments provide a method for treating an intervertebral disc having a nucleus pulposus and an annulus fibrosis, using one or more superabsorbent polymers. Additionally, the embodiments provide a method for bulking up an intervertebral disc having a nucleus pulposus and an annulus fibrosis, using one or more superabsorbent polymers. The methods comprise introducing an amount of the superabsorbent polymers into the intervertebral disc space without removing nucleus pulposus or annulus fibrosis material.