摘要:
Disclosed herein is a technique for created an advanced MRAM array for constructing a memory integrated circuit chip. More specifically, the disclosed principles provide for an integrated circuit memory chip comprised of a combination of at least one of an array of high-speed magnetic memory cells, and at least one of an array of high-density magnetic memory cells. Accordingly, a memory chip constructed as disclosed herein provides the benefit of both high-speed and high-density memory cells on the same memory chip. As a result, applications benefiting from the use of (or perhaps even needing) high-speed memory cells are provided by the memory cells in the high-speed memory cell array.
摘要:
Disclosed herein is a technique for created an advanced MRAM array for constructing a memory integrated circuit chip. More specifically, the disclosed principles provide for an integrated circuit memory chip comprised of a combination of at least one of an array of high-speed magnetic memory cells, and at least one of an array of high-density magnetic memory cells. Accordingly, a memory chip constructed as disclosed herein provides the benefit of both high-speed and high-density memory cells on the same memory chip. As a result, applications benefiting from the use of (or perhaps even needing) high-speed memory cells are provided by the memory cells in the high-speed memory cell array.
摘要:
A memory cell structure. A first conductive line is cladded by at least two first ferromagnetic layers respectively having a first easy axis and a second easy axis, a nano oxide layer located between the first ferromagnetic layers, and a first pinned ferromagnetic layer. The first and second easy axes are 90 degree twisted-coupled with the first easy axis parallel to the length of the first conductive line and the second easy axis perpendicular to the length of the first conductive line. A storage device is adjacent to the first conductive line, receiving a magnetic field generated from a current flowing through the first conductive line.
摘要:
Disclosed herein is a magnetoresistive structure, for example useful as a spin-valve or GMR stack in a magnetic sensor, and a fabrication method thereof. The magnetoresistive structure uses twisted coupling to induce a perpendicular magnetization alignment between the free layer and the pinned layer. Ferromagnetic layers of the free and pinned layers are exchange-coupled using antiferromagnetic layers having substantially parallel exchange-biasing directions. Thus, embodiments can be realized that have antiferromagnetic layers formed of a same material and/or having a same blocking temperature. At least one of the free and pinned layers further includes a second ferromagnetic layer and an insulating layer, such as a NOL, between the two ferromagnetic layers. The insulating layer causes twisted coupling between the two ferromagnetic layers, rotating the magnetization direction of one 90 degrees relative to the magnetization direction of the other.
摘要:
Disclosed herein is a magnetoresistive structure, for example useful as a spin-valve or GMR stack in a magnetic sensor, and a fabrication method thereof. The magnetoresistive structure uses twisted coupling to induce a perpendicular magnetization alignment between the free layer and the pinned layer. Ferromagnetic layers of the free and pinned layers are exchange-coupled using antiferromagnetic layers having substantially parallel exchange-biasing directions. Thus, embodiments can be realized that have antiferromagnetic layers formed of a same material and/or having a same blocking temperature. At least one of the free and pinned layers further includes a second ferromagnetic layer and an insulating layer, such as a NOL, between the two ferromagnetic layers. The insulating layer causes twisted coupling between the two ferromagnetic layers, rotating the magnetization direction of one 90 degrees relative to the magnetization direction of the other.
摘要:
A semiconductor substrate includes semi-insulating portions beneath openings in a patterned hardmask film formed over a semiconductor substructure to a thickness sufficient to prevent charged particles from passing through the hardmask. The semi-insulating portions include charged particles and may extend deep into the semiconductor substrate and electrically insulate devices formed on opposed sides of the semi-insulating portions. The charged particles may advantageously be protons and further substrate portions covered by the patterned hardmask film are substantially free of the charged particles.
摘要:
A method for forming semi-insulating portions in a semiconductor substrate provides depositing a hardmask film over a semiconductor substructure to a thickness sufficient to prevent charged particles from passing through the hardmask. The hardmask is patterned creating openings through which charged particles pass and enter the substrate during an implantation process. The semi-insulating portions may extend deep into the semiconductor substrate and electrically insulate devices formed on opposed sides of the semi-insulating portions. The charged particles may advantageously be protons and further substrate portions covered by the patterned hardmask film are substantially free of the charged particles.
摘要:
Disclosed herein are toggle-mode magnetoresistive random access memory (MRAM) devices having small-angle toggle write lines, and related methods of toggle-mode switching MRAM devices. Also disclosed are layouts for MRAM devices constructed according to the disclosed principles. Generally speaking, the disclosed principles provide for non-orthogonally aligned toggle-mode write lines used to switch toggle-mode MRAM devices that employ a bias field to decrease the threshold needed to switch the magnetic state of each device. While the conventional toggle-mode write lines provide for the desired orthogonal orientation of the applied magnetic fields to optimize device switching, the use of a bias field affects this orthogonal orientation. By non-orthogonally aligning the two write lines as disclosed herein, the detrimental affect of the bias field may be compensated for such that the net fields applied to the device for both lines are again substantially orthogonal, as is desired.
摘要:
The present disclosure provides a magnetic memory element. The memory element includes a magnetic tunnel junction (MTJ) element and an electrode. The electrode includes a pinning layer, a pinned layer, and a non-magnetic conductive layer. In one embodiment, the MTJ element includes a first surface having a first surface area, and the electrode includes a second surface. In the embodiment, the second surface of the electrode is coupled to the first surface of the MTJ element such that an interface area is formed and the interface area is less than the first surface area.
摘要:
The present disclosure provides a magnetic memory element. The memory element includes a magnetic tunnel junction (MTJ) element and an electrode. The electrode includes a pinning layer, a pinned layer, and a non-magnetic conductive layer. In one embodiment, the MTJ element includes a first surface having a first surface area, and the electrode includes a second surface. In the embodiment, the second surface of the electrode is coupled to the first surface of the MTJ element such that an interface area is formed and the interface area is less than the first surface area.