摘要:
The present invention generally relates to a circuit structure, design structure and method of manufacturing a circuit, and more specifically to a circuit structure and design structure for an on-chip slow wave transmission line band-stop filter and a method of manufacture. A structure includes an on-chip transmission line stub comprising a conditionally floating structure structured to provide increased capacitance to the on-chip transmission line stub when the conditionally floating structure is connected to ground.
摘要:
An on-chip tunable transmission line (t-line), methods of manufacture and design structures are provided. The structure includes a tunable transmission line (t-line) with fixed characteristic impedance comprising functionally-differentiated switches used for inductance and capacitance, respectively.
摘要:
A design structure is embodied in a machine readable medium for designing, manufacturing, or testing a design. The design structure includes a substrate including a silicon layer. Furthermore, the design structure includes a metal layer on a bottom side of the silicon layer and a dielectric layer on a top side of the silicon layer. Additionally, the design structure includes a top-side interconnect of the through-silicon via bandpass filter on a surface of the dielectric layer and a plurality of contacts in the dielectric layer in contact with the top-side interconnect. Further, the design structure includes a plurality of through-silicon vias through the substrate and in contact with the plurality of contacts, respectively, and the metal layer.
摘要:
A reconfigurable Wilkinson power divider, methods of manufacture and design structures are provided. The structure includes a first port, and a first arm and a second arm connected to the first port. The first arm and the second arm each include one or more tunable t-line circuits. The structure also includes a second port and a third port connected to the first port via the first arm and second arm, respectively.
摘要:
A semiconductor switching device includes a field effect transistor and an inductor structure that provides a frequency dependent inductance in a parallel connection. During the off-state of the semiconductor switching device, the frequency dependent impedance component due to the off-state parasitic capacitance of the switching device is cancelled by the frequency dependent inductance component of the inductor structure, which provides a non-linear impedance as a function of frequency. The inductor structure provides less inductance at a higher operating frequency than at a lower operating frequency to provide more effective cancellation of two impedance components of the parasitic capacitance and the inductance. Thus, the semiconductor switching device can provide low parasitic coupling at multiple operating frequencies. The operating frequencies of the semiconductor switching device can be at gigahertz ranges for millimeter wave applications.
摘要:
Branchline coupler structure using slow wave transmission line effect having both large inductance and large capacitance per unit length. The branchline coupler structure includes a plurality of quarter-wavelength transmission lines, at least one of which includes a high impedance arm and a low impedance arm. The high and low impedances are relative to each other. The high impedance arm includes a plurality of narrow cells and having an inductance of nL and a capacitance of C/n, and the low impedance arm includes a plurality of wide cells and having an inductance of L/n and capacitance of nC. The wide and narrow cells are relative to each other, and the wide and narrow cells are adjacent each other to form a signal layer having step discontinuous alternative widths.
摘要:
The present invention generally relates to a circuit structure, design structure and method of manufacturing a circuit, and more specifically to a circuit structure and design structure for an on-chip slow wave transmission line band-stop filter and a method of manufacture. A structure includes an on-chip transmission line stub comprising a conditionally floating structure structured to provide increased capacitance to the on-chip transmission line stub when the conditionally floating structure is connected to ground.
摘要:
Disclosed is a chip with a power divider/combiner, a module incorporating the chip and associated methods. The divider/combiner comprises first and second metal layers on opposite sides of a substrate. Interconnects extend through the substrate and comprise: a first interconnect, second interconnects annularly arranged about the first interconnect and third interconnects annularly arranged about the second interconnects. Each interconnect comprises one or more through silicon vias lined/filled with a conductor. For a power divider, an opening in the first metal layer at the first interconnect comprises an input port for receiving power and openings in the first or second metal layer at the second interconnects comprise output ports for applying power to other devices. For a power combiner, openings in the first or second metal layer at the second interconnects comprise the input ports and an opening in the first metal layer at the first interconnect comprises an output port.
摘要:
Disclosed is a chip with a power divider/combiner, a module incorporating the chip and associated methods. The divider/combiner comprises first and second metal layers on opposite sides of a substrate. Interconnects extend through the substrate and comprise: a first interconnect, second interconnects annularly arranged about the first interconnect and third interconnects annularly arranged about the second interconnects. Each interconnect comprises one or more through silicon vias lined/filled with a conductor. For a power divider, an opening in the first metal layer at the first interconnect comprises an input port for receiving power and openings in the first or second metal layer at the second interconnects comprise output ports for applying power to other devices. For a power combiner, openings in the first or second metal layer at the second interconnects comprise the input ports and an opening in the first metal layer at the first interconnect comprises an output port.
摘要:
A semiconductor switching device includes a field effect transistor and an inductor structure that provides a frequency dependent inductance in a parallel connection. During the off-state of the semiconductor switching device, the frequency dependent impedance component due to the off-state parasitic capacitance of the switching device is cancelled by the frequency dependent inductance component of the inductor structure, which provides a non-linear impedance as a function of frequency. The inductor structure provides less inductance at a higher operating frequency than at a lower operating frequency to provide more effective cancellation of two impedance components of the parasitic capacitance and the inductance. Thus, the semiconductor switching device can provide low parasitic coupling at multiple operating frequencies. The operating frequencies of the semiconductor switching device can be at gigahertz ranges for millimeter wave applications.