Abstract:
A decoding method and system for stochastic decoding of linear codes with the parity check matrix comprising elements of a Galois field is provided. Each encoded sample of a set of encoded samples is first scaled by a scaling factor proportional to a noise level of the set of encoded samples. Each of the scaled encoded samples is then converted into a corresponding probability. For each probability a corresponding probability message is the generated by encoding each probability as a sequence of symbols or bits. Each probability message is then provided to a respective variable node of a logic circuitry for stochastic decoding. The logic circuitry represents a factor graph of the parity check matrix of the linear code. Using the logic circuitry each probability message is passed through the factor graph by performing for each received symbol at the variable nodes the equality function, at the permutation nodes one of multiplication and division, and at the parity check nodes the parity check function, wherein each of the variable nodes provides an output symbol in dependence upon each received symbol.
Abstract:
The present invention relates to a decoding method and system for stochastic decoding of linear block codes with parity check matrix. Each encoded sample of a set of encoded samples is converted into a corresponding probability. For each probability a corresponding probability message is the generated by encoding each probability as a sequence of digital symbols. Each probability message is then provided to a respective node of a logic circuitry for stochastic decoding. The logic circuitry represents a factor graph of the parity check matrix of the linear block code. Using the logic circuitry each probability message is processed for determining an estimated sequence of information symbols. If an equality node is in a hold state a chosen symbol is provided from a corresponding memory which is updated by storing output symbols from the equality node when the same is in a state other than a hold state.
Abstract:
A method and system for determining convergence of iterative processes and estimating a scaling factor in decoding processes based on switching activity of the logic circuitry are provided. During execution of an iterative process using logic circuitry comprising logic gates switching activity of a plurality of the logic gates is sensed to determine switching data indicative of a total switching activity of the plurality of the logic gates. The iterative process is iterated using the logic circuitry until convergence is indicated by the switching data. Similarly, a scaling factor for use in decoding processes is determined based on the switching data.
Abstract:
The present invention relates to a decoding method and system for stochastic decoding of linear block codes with parity check matrix. Each encoded sample of a set of encoded samples is converted into a corresponding probability. For each probability a corresponding probability message is the generated by encoding each probability as a sequence of digital symbols. Each probability message is then provided to a respective node of a logic circuitry for stochastic decoding. The logic circuitry represents a factor graph of the parity check matrix of the linear block code. Using the logic circuitry each probability message is processed for determining an estimated sequence of information symbols. If an equality node is in a hold state a chosen symbol is provided from a corresponding memory which is updated by storing output symbols from the equality node when the same is in a state other than a hold state.
Abstract:
A method for iteratively decoding a set of encoded samples received from a transmission channel is provided. A data signal indicative of a noise level of the transmission channel is received. A scaling factor is then determined in dependence upon the data signal and the encoded samples are scaled using the scaling factor. The scaled encoded samples are then iteratively decoded. Furthermore, a method for initializing edge memories is provided. During an initialization phase initialization symbols are received from a node of a logic circuitry and stored in a respective edge memory. The initialization phase is terminated when the received symbols occupy a predetermined portion of the edge memory. An iterative process is executed using the logic circuitry storing output symbols received from the node in the edge memory and a symbol is retrieved from the edge memory and provided as output symbol of the node. Yet further an architecture for a high degree variable node is provided. A plurality of sub nodes forms a variable node for performing an equality function in an iterative decoding process. Internal memory is interposed between the sub nodes such that the internal memory is connected to an output port of a respective sub node and to an input port of a following sub node, the internal memory for providing a chosen symbol if a respective sub node is in a hold state, and wherein at least two sub nodes share a same internal memory.
Abstract:
The present invention relates to a decoding method and system for stochastic decoding of LDPC codes. Each encoded sample of a set of encoded samples is first scaled by a scaling factor proportional to a noise level of the set of encoded samples. Each of the scaled encoded samples is then converted into a corresponding probability. For each probability a corresponding probability message is the generated by encoding each probability as a sequence of digital bits. Each probability message is then provided to a respective node of a logic circuitry for stochastic decoding. The logic circuitry represents a factor graph of the parity check matrix of the LDPC code. Using the logic circuitry each probability message is processed for determining an estimated sequence of information bits. If an equality node is in a hold state a chosen bit is provided from a corresponding edge memory which is updated by storing output bits from the equality node when the same is in a state other than a hold state.
Abstract:
A method for iteratively decoding a set of encoded samples received from a transmission channel is provided. A data signal indicative of a noise level of the transmission channel is received. A scaling factor is then determined in dependence upon the data signal and the encoded samples are scaled using the scaling factor. The scaled encoded samples are then iteratively decoded. Furthermore, a method for initializing edge memories is provided. During an initialization phase initialization symbols are received from a node of a logic circuitry and stored in a respective edge memory. The initialization phase is terminated when the received symbols occupy a predetermined portion of the edge memory. An iterative process is executed using the logic circuitry storing output symbols received from the node in the edge memory and a symbol is retrieved from the edge memory and provided as output symbol of the node. Yet further an architecture for a high degree variable node is provided. A plurality of sub nodes forms a variable node for performing an equality function in an iterative decoding process. Internal memory is interposed between the sub nodes such that the internal memory is connected to an output port of a respective sub node and to an input port of a following sub node, the internal memory for providing a chosen symbol if a respective sub node is in a hold state, and wherein at least two sub nodes share a same internal memory.
Abstract:
Low-Density Parity-Check (LDPC) codes offer error correction at rates approaching the link channel capacity and reliable and efficient information transfer over bandwidth or return-channel constrained links with data-corrupting noise present. They also offer performance approaching channel capacity exponentially fast in terms of the code length, linear processing complexity, and parallelism that scales with code length. They also offer challenges relating to decoding complexity and error floors limiting achievable bit-error rates. Accordingly encoders with reduced complexity, reduced power consumption and improved performance are disclosed with various improvements including simplifying communications linking multiple processing nodes by passing messages where pulse widths are modulated with the corresponding message magnitude, delaying a check operation in dependence upon variable node states, running the decoder multiple times with different random number generator seeds for a constant channel value set, and employing a second decoder with a randomizing component when the attempt with the first decoder fails.
Abstract:
The present invention relates to a decoding method and system for stochastic decoding of LDPC codes. Each encoded sample of a set of encoded samples is first scaled by a scaling factor proportional to a noise level of the set of encoded samples. Each of the scaled encoded samples is then converted into a corresponding probability. For each probability a corresponding probability message is the generated by encoding each probability as a sequence of digital bits. Each probability message is then provided to a respective node of a logic circuitry for stochastic decoding. The logic circuitry represents a factor graph of the parity check matrix of the LDPC code. Using the logic circuitry each probability message is processed for determining an estimated sequence of information bits. If an equality node is in a hold state a chosen bit is provided from a corresponding edge memory which is updated by storing output bits from the equality node when the same is in a state other than a hold state.
Abstract:
Low-Density Parity-Check (LDPC) codes offer error correction at rates approaching the link channel capacity and reliable and efficient information transfer over bandwidth or return-channel constrained links with data-corrupting noise present. LDPC codes also offer error correction performance approaching channel capacity exponentially fast in terms of the code length, linear processing complexity, and parallelism that scales with the code length. They also offer challenges relating to the decoding complexity of the binary error-correction codes themselves and error floors limiting achievable bit-error rates. A new Relaxed Half-Stochastic (RHS) decoding algorithm is presented that reduces decoding complexity for high decoding throughput applications. The RHS algorithm uses an approach based on stochastic decoding algorithms but differs significantly from the conventional approaches of LDPC decoder implementation. The RHS algorithm also leads to a randomized decoding technique called redecoding that addresses the error floor limitation.