Abstract:
A level shift circuit for providing predictable outputs when VDDH is powering up and minimizing DC current when VDDL is powering up. The level shift circuit may have a control circuit that includes a first inverter with an input coupled to VDDL, one or more diodes coupled between the first inverter and its powering voltage supply, a second inverter coupled to an output of the first inverter (optionally coupled to its voltage supply via one or more diodes), a third inverter coupled to an output of the second control inverter, an NMOS transistor coupled to an output of the third inverter that forces the output of the level shift circuit to the ground voltage when enabled, and a PMOS transistor coupled to an output of the third inverter that disconnects a portion of the level shift circuit, and thus the output of the level shift circuit, from VDDH when disabled.
Abstract:
A level shift circuit for providing predictable outputs when VDDH is powering up and minimizing DC current when VDDL is powering up. The level shift circuit may have a control circuit that includes a first inverter with an input coupled to VDDL, one or more diodes coupled between the first inverter and its powering voltage supply, a second inverter coupled to an output of the first inverter (optionally coupled to its voltage supply via one or more diodes), a third inverter coupled to an output of the second control inverter, an NMOS transistor coupled to an output of the third inverter that forces the output of the level shift circuit to the ground voltage when enabled, and a PMOS transistor coupled to an output of the third inverter that disconnects a portion of the level shift circuit, and thus the output of the level shift circuit, from VDDH when disabled.
Abstract:
A design for stacking integrated circuits is described. Some integrated circuits have multiple signal pads that are common between a top integrated circuit and a bottom integrated circuit in an integrated circuit pair. These common pads are placed symmetrically on the integrated circuit. Unique signal pads are provided independently to each integrated circuit in a stack. An optional array of solder bumps placed over a central area of the integrated circuit may be used, which provides for heat transfer through the stack. When stacking multiple pairs of integrated circuits, the top integrated circuit in the integrated circuit stack pair serves as a spacer between the first and second pair of integrated circuits.
Abstract:
A sense amplifier/latch circuit for a Metal Nitride Oxide (MNOS) Block Orgaized Random Access Memory (BORAM) with analog memory retention interrogation capabilities. The sense amplifier/latch circuit includes the associative memory transistors as an integral part of the latch as well as circuitry for increasing the switching speed of the sense latch in response to the differing conductances of the memory transistors when a row address voltage is applied to their gates.
Abstract:
A system for initializing circuitry is presented. The system employs a power-on reset circuit having a threshold voltage and a programmable switch circuit. The power-on reset circuit has a detector circuit for detecting a reference voltage, and a one-sided latch for generating an output voltage reflective of the reference voltage. The detector circuit has a threshold after which the one-sided latch is activated. The programmable switch circuit receives the output voltage of the power-on reset circuit and generates an enable signal and its complement based on the status of an internal fuse. The switch point of the power-on reset circuit provides for a rapid increase in output voltage that offsets parasitic leakage current in the programmable switch circuit that can result in improper enable signal output. A high resistance direct path to ground on an output node of the power-on reset circuit prevents residual charge from causing an undesired misfire.
Abstract:
A system for initializing circuitry is presented. The system employs a power-on reset circuit having a threshold voltage and a programmable switch circuit. The power-on reset circuit has a detector circuit for detecting a reference voltage, and a one-sided latch for generating an output voltage reflective of the reference voltage. The detector circuit has a threshold after which the one-sided latch is activated. The programmable switch circuit receives the output voltage of the power-on reset circuit and generates an enable signal arid its complement based on the status of an internal fuse. The switch point of the power-on reset circuit provides for a rapid increase in output voltage, offsetting parasitic leakage current in the programmable switch circuit that can result in improper enable signal output.