Abstract:
Pressure sensor circuit (12) develops an input sensor signal (V01) varying linearly as a function of sensed pressure (P) over a range (P.sub.1) of pressure. An error reduction circuit (14-21, R10-R14) having operational amplifiers (16, 19) and a semiconductor device (21) receives the input sensor signal and provides an output signal (V.sub.OUT). The output signal varies at a first high constant rate during a first portion (P.sub.2) of the pressure range and at a lower constant rate during a second portion (P.sub.3) of the pressure range. A break point (BP) between the first and second pressure range portions occurs when the input sensor signal magnitude exceeds a voltage level (V.sub.T) magnitude. The rate of change of the output signal during the first pressure range portion exceeds the rate of change of the input sensor signal during this same pressure range and thus the percentage of error of the output signal is less during the first pressure range portion than the percentage of error of the input sensor signal. The break point and rates of change of the output signal are substantially temperature independent and each can be independently adjusted.
Abstract:
An automotive sensor reads from memory previously stored back-calculated diagnostic-code values for which a fixed cyclic-redundancy-check (“CRC”) value is valid and transmits the previously stored back-calculated diagnostic-code values read from memory each paired together with the fixed CRC value.
Abstract:
A multiple element sensor for sensing pressure, the sensor has a substrate 201 with a diaphragm portion 203. Multiple sensing elements 205, 207, 209, 211 are each disposed on the diaphragm portion 203 of the substrate 201. These sensing elements 205, 207, 209, 211 each have output terminals 231, 232, 233, 234, 235, 236, 237, 238 providing signals 371, 373, 375, 377 indicative of the pressure. A combining circuit 217 has input terminals 337, 339, 341, 343 each coupled to the output terminals 231, 232, 233, 234, 235, 236, 237, 238 of each of the sensing elements 205, 207, 209, 211 respectively. The combining circuit 217 has a combined output terminal 219 for providing an output signal 345 dependent on the plurality of signals 371, 373, 375, 377. By fabricating this structure different pressure sensor ranges can be selected depending on how many of the sensing elements 205, 207, 209, 211 are selected by the combining circuit 217.
Abstract:
A sensor (10) includes a plurality of sensing elements (14-20) deposed on a sensor substrate (12) and an electronic switching circuit (22) electrically connected to each of the sensing elements (14-20) for electrically selecting at least one of the sensing elements (14-20).
Abstract:
A method and media-isolated absolute pressure sensor apparatus includes a first sensor (101) to measure a pressure difference between an isolated media (P1) and a second media (Pa). A second sensor (103) measures an absolute (relative to vacuum) pressure of the second media (Pa). Each sensor (101, 103) has its own offset and slope response. An equalizer (217, 219) matches the slopes of the sensors (101, 103), wherein a summing circuit (225) can add the substantially same slope outputs to provide an output signal (227) indicative of an absolute pressure measurement of the isolated media (P1). Offset and temperature compensation of each sensor can also be provided.
Abstract:
An amplifier circuit (20) having independent gain and response time adjustments includes an amplifier (22), a response time resistor (30), a variable gain resistor (32) attached to the response time resistor and to an output of the amplifier (22), a response time capacitor (34) connected in parallel to the response time resistor (30), an anti-gain resistor (36) connected to a response time (30) and variable gain resistor (32) and to ground, and an input resistor (38) connected to the response time resistor (30) and to in input terminal of the amplifier (22). The response time resistor has a substantially greater resistance value than a resistance value of the variable gain resistor (32) for allowing a gain adjustment of the amplifier circuit (20) without changing the response time of the amplifier (22).
Abstract:
A media-isolated differential pressure sensor apparatus and corresponding method combines a first signal (207, 209) provided by a first pressure sensor (101), indicative of a difference between a first pressure and second pressure applied across the first pressure sensor, and a second signal (213, 215) provided by a second pressure sensor, indicative of a difference between the second pressure and a third pressure applied across the second pressure sensor (103) to form a differential pressure sensor. Responsive to a pressure span the first signal (207, 209) responds with a slope response different than a slope response of the second signal (213, 215). A slope adjustment circuit (217) enables an adjustment of the slope response of the first signal (207, 209) to correspond to the slope response of the second signal (213, 215), and provides a slope adjusted first signal (221) dependent on the adjusted slope response. A difference circuit (225) provides an output signal (227) dependent on a difference between the slope adjusted first signal (221) and the second signal (223), where the output signal (227) is indicative of a pressure differential sensed between the first pressure sensor (101) and the second pressure sensor (103).
Abstract:
A method and media-isolated absolute pressure sensor apparatus includes a first sensor (101) to measure a pressure difference between an isolated media (P1) and a second media (Pa). A second sensor (103) measures an absolute (relative to vacuum) pressure of the second media (Pa). Each sensor (101, 103) has its own offset and slope response. An equalizer (217, 219) matches the slopes of the sensors (101, 103), wherein a summing circuit (225) can add the substantially same slope outputs to provide an output signal (227) indicative of an absolute pressure measurement of the isolated media (P1). Offset and temperature compensation of each sensor can also be provided.
Abstract:
An electronically calibrated sensor (100) includes a sensing element (102) with an output coupled to a signal conditioning circuit (104). The signal conditioning circuit (104) is adapted to be highly computationally efficient and operable for compensating for temperature and part-to-part variation on the sensing element output for providing a useable sensor output signal. The signal conditioning circuit (104) includes an analog-to-digital/digital-to-analog (ADC/DAC) conversion device (112). The ADC/DAC (112) is operable to perform both analog input signal analog-to-digital conversion and digital output signal digital-to-analog conversion. The ADC/DAC (112) is further adapted to provide analog control signals to input signal conditioning circuits (104, 106).
Abstract:
A polynomial calculator device is applied to calibrate a sensing device. Preferably the sensing device (100) includes a sensing element (102) with an output coupled to a signal conditioning circuit (104). The signal conditioning circuit (104) is adapted to be highly computationally efficient and operable for compensating for temperature and part-to-part variation on the sensing element output for providing a useable sensor output signal. A calibration method relies on a unique polynomial calculator (118) that is implemented as part of the signal conditioning circuit (104). The sensor is preferably manufactured and packaged prior to calibration so as to avoid any post-calibration processing error. The packaged sensor is calibrated and a number of calibration values are retained in a memory (114) and accessed by the calibration method during sensing element signal processing.