Abstract:
Collecting roll data associated with a sensing and mating rolls that form a nip uses first and second pluralities of sensors. Each sensor of the first plurality has a corresponding sensor in the second plurality which is associated with a same respective axial location on the sensing roll but is spaced-apart circumferentially. The sensors are located at axially spaced-apart locations of the sensing roll and generate either a first or second respective signal when entering the nip. Upon receiving a generated signal, a determination is made about which sensor generated the received signal and the membership of that sensor in one of the pluralities. Based upon a rotational position of the mating roll, a determination is made of which tracking segment associated with the mating roll enters the region of the nip concurrently with the signal to store the signal using the determined one tracking segment and the determined membership.
Abstract:
Collecting roll data associated with a sensing and mating rolls that form a nip uses first and second pluralities of sensors. Each sensor of the first plurality has a corresponding sensor in the second plurality which is associated with a same respective axial location on the sensing roll but is spaced-apart circumferentially. The sensors are located at axially spaced-apart locations of the sensing roll and generate either a first or second respective signal when entering the nip. Upon receiving a generated signal, a determination is made about which sensor generated the received signal and the membership of that sensor in one of the pluralities. Based upon a rotational position of the mating roll, a determination is made of which tracking segment associated with the mating roll enters the region of the nip concurrently with the signal to store the signal using the determined one tracking segment and the determined membership.
Abstract:
A circuit for linearizing the output of a differential pressure transducer includes first and second operational amplifiers. Each amplifier is associated with threshold devices as diodes so that one amplifier will be active for one condition of output polarity while the other amplifier will be active for the other condition of output polarity. The output of the amplifiers are connected to a common terminal which provides a compensating biasing voltage to the transducer. The voltage varies in a "V" shaped characteristic to enable one to achieve a linear output voltage from the transducer for both positive and negative pressure differences.
Abstract:
A load cell includes a strain inducing element having a fixed rigid body fixedly secured to a base support, and a plurality of transverse beams spaced one above the other and connecting the fixed and movable rigid bodies together. Each of the transverse beams has first and second strain generating areas defined therein in spaced relation to each other at respective locations adjacent the fixed and movable rigid bodies. A bridge circuit for outputting a load signal of a magnitude proportional to strains generated at the strain generating areas includes strain gauges for detecting the strains generated at the strain generating areas, adjusting elements for adjusting a balance of the bridge circuit, and lines connecting them together. A circuit portion of the bridge circuit which includes at least the strain gauge and some of the lines is formed in a predetermined pattern on one surface of the strain inducing element so as to straddle between the first and second strain generating areas. Not only is the circuit portion symmetrical with respect to a point intermediate between the first and second strain generating areas, but also the strain inducing element has left and right portions, including the fixed and movable rigid bodies, which are symmetrical to each other.
Abstract:
The output of a bridge measurement circuit is sampled at a time when there is no desired, or expected, bridge output signal, and a balance voltage applied to the bridge measurement circuit is automatically adjusted such that the sample bridge output signal is equivalent to a reference output signal. After the bridge is balanced, the balance voltage is automatically modified by a calibration voltage calculated to provide a known change in the sample bridge output signal, and the sample bridge output signal is compared to a reference output to automatically check the bridge measurement circuit gain. The balance voltage may be automatically modified by multiple calibration voltages, and the sample bridge output signal provides an indication of the linearity of the amplifier gain. The sample bridge output signal is monitored after a change in the balance voltage to automatically provide an indication of the bridge measurement circuit filter cutoff frequency.
Abstract:
To compensate for non-linearities in a bridge circuit comprising a plurality of strain gauge transducers arranged to provide an output signal proportional to the load on a member, a non-linear strain sensitive element is mounted in the area of the member sensitive to load strain and electrically connected in series in one arm of the bridge. A matching non-linear strain sensitive element is mounted in an area of the member not sensitive to load strain and is connected in an adjacent arm of the bridge to compensate for temperature-dependent non-linearities.
Abstract:
An apparatus for correcting the error due to the non-linear variation in an output signal produced by an electrical system for measuring a physical quantity, e.g. temperature, by means of a probe, the electrical resistance of which is sensitive to the variation of the physical quantity, in which the maximum value of the error in the output signal to be corrected in the range of measurement considered is first determined. Then a correcting signal is applied as a compensating signal to one of the probe outputs, which signal is in the same ratio to said maximum error as the instantaneous output signal is to the value of the output signal which produces said maximum error. Conveniently the correcting signal is applied as a feedback signal from an output terminal of the system.