摘要:
Disclosed herein are liquid conductive wires and methods for making and using the same. Liquid conductive wires can be used in flexible, reconfigurable, dynamic and transparent electronic devices. Liquid conductive wires can be used in a variety of systems including, but not limited to, soft robotics.
摘要:
Body-mountable devices are provided to detect the presence or status of a tumor in a body by detecting one or more properties of a probe located in subsurface vasculature of the body. A wearable body-mountable device can be worn for a protracted period of time to detect a probe in the vasculature at low concentrations and/or at low rates. A body-mountable device can detect properties of the probe that are indicative of whether the probe has interacted with a tumor of the body and determine the presence or status of a tumor in the body based on such detected properties. Additionally or alternatively, the probe could be introduced into the body as a probe aggregate and released from if the probe aggregate is absorbed by a tumor. The presence of released probes could be detected to determine a presence or status of a tumor in the body.
摘要:
Wearable devices are described herein including at least two photodetectors and a mount configured to mount the at least two photodetectors to an external surface of a wearer. The at least two photodetectors are configured to detect alignment between the wearable device and a target on or in the body of the wearer (e.g., to detect the location of vasculature within the body of the wearer relative to the at least two photodetectors). Alignment of the at least two photodetectors relative to the target could enable detection of one or more physiological properties of the wearer. For example, the wearable device could include a sensor configured to detect a property of the target when the sensor is above the target, and alignment of the target relative to the at least two photodetectors could include the sensor being located above the target.
摘要:
Wearable devices are described herein including at least two photodetectors and a mount configured to mount the at least two photodetectors to an external surface of a wearer. The at least two photodetectors are configured to detect alignment between the wearable device and a target on or in the body of the wearer (e.g., to detect the location of vasculature within the body of the wearer relative to the at least two photodetectors). Alignment of the at least two photodetectors relative to the target could enable detection of one or more physiological properties of the wearer. For example, the wearable device could include a sensor configured to detect a property of the target when the sensor is above the target, and alignment of the target relative to the at least two photodetectors could include the sensor being located above the target.
摘要:
An imaging agent for detecting analytes in a biological environment includes functionalized, silicon vacancy center-containing nanodiamonds. Individual nanodiamonds of the imaging agent include at least one silicon vacancy center. The at least one silicon vacancy center can emit light having a wavelength in a narrow band in response to illumination having any wavelength in a wide range of wavelengths. The nanodiamonds are functionalized to selectively interact with an analyte of interest. The nanodiamonds can additionally include other color centers, and the imaging agent can include a plurality of sets of nanodiamonds having detectably unique ratios of silicon vacancy centers to other color centers. The silicon vacancy centers in the nanodiamonds can have a preferred orientation enabling orientation tracking of individual nanodiamonds or other applications. A method for detecting properties of the analyte of interest by interacting with the imaging agent is also provided.
摘要:
Disclosed methods and systems may be operable to obtain non-contact diagnostic information about movements of scattering objects such as fluids in subsurface vasculature in tissue. As an example, a method may include causing a light source to illuminate the tissue with at least a first portion of the emitted light and illuminate an optical modulator with at least a second portion of the emitted light. The second portion of the emitted light may be modulated by the optical modulator. An offset source is configured to provide an offset frequency signal. An image sensor may receive optical information from the sample. A heterodyne signal based on the reference frequency signal and the offset frequency signal may be used as a gain input of each detector element of the image sensor. Based on the received information, a movement of a portion of the sample may be determined.
摘要:
Wearable devices are described herein including at least two sensors configured to detect hemodynamic properties of a wearer. A first sensor is configured to detect a hemodynamic property of a portion of vasculature, where the operation of the first sensor is based on a hemodynamic property detected by a second sensor. A timing of operation, a value of one or more controlled operational parameters, a filter setting, or some other aspect of the operation of the first sensor could be controlled based on the hemodynamic property detected by the second sensor. Hemodynamic properties could include blood flow rate, volume, and/or pressure in one or more portions of vasculature, a timing, rate, delay, or other information about heartbeats, an oxygenation level of blood, a velocity of blood cells in blood, or some other information about a wearer's blood, heart, and/or cardiovascular system.
摘要:
Systems are provided for detecting the flow of blood or other fluids in biological tissue by illuminating the biological tissue with a coherent light source and detecting time-varying patterns of constructive and destructive interference in light received from portions of the biological tissue by an imager. The movement of blood cells and other light-scattering elements in the biological tissue causes transient, short-duration changes in light emitted from portions of the biological tissue proximate to the moving blood cells or other scatterers. High-frequency sampling or other high-bandwidth processing of light intensities detected by an imager could be used to determine the flow of blood or other fluids at a plurality of points in the biological tissue, to detect and/or localize a tumor in the biological tissue, to determine the location, pattern, width, or other properties of vasculature in the biological tissue, or to provide information for some other application(s).
摘要:
Systems are provided for detecting the flow of blood or other fluids in biological tissue by illuminating the biological tissue with a coherent light source and detecting time-varying patterns of constructive and destructive interference in light received from portions of the biological tissue by an imager. The movement of blood cells and other light-scattering elements in the biological tissue causes transient, short-duration changes in light emitted from portions of the biological tissue proximate to the moving blood cells or other scatterers. High-frequency sampling or other high-bandwidth processing of light intensities detected by an imager could be used to determine the flow of blood or other fluids at a plurality of points in the biological tissue, to detect and/or localize a tumor in the biological tissue, to determine the location, pattern, width, or other properties of vasculature in the biological tissue, or to provide information for some other application(s).
摘要:
The present disclosure is related to a method of producing a microfluidic sorting apparatus. The method includes providing an injection-molded substrate comprising a network of channels; bonding an insulating film to an upper surface of the substrate to cover the network of channels; and depositing a conductive film on the insulating film. The substrate can be separated from the conductive film.