摘要:
A refractive index writing system includes a pulsed laser source, an objective lens for focusing an output of the pulsed laser source to a focal spot in an optical material, and a scanner for relatively moving the focal spot with respect to the optical material along a scan region. A beam multiplexer divides the output of the laser source into at least two working beams that are focused to variously shaped focal spots within the optical material. A controller controls at least one of a temporal and a spatial offset between the focal spots of the working beams together with the relative speed and direction of the scanner for maintaining an energy profile within the optical material along the scan region above a nonlinear absorption threshold of the optical material and below a breakdown threshold of the optical materials.
摘要:
A device, system and method for the detection and screening of plastic microparticles in a sample is disclosed. A nanoporous silicon nitride membrane is used to entrap plastic microparticles contained in the sample. The sample may be a water sample, an air sample, or other liquid or gas sample. The entrapped plastic microparticles are then heated or otherwise processed on the nanoporous silicon nitride membrane. An imaging system observes the nanoporous silicon nitride membrane with tic entrapped plastic microparticles to determine the type and quantity of the various plastic microparticles that are entrapped on the membrane.
摘要:
Methods of designing a laser writing system for modifying a plurality of ophthalmic devices, and systems designed in accordance with those methods. One example of such a method includes: (a) determining at least one material characteristic of the ophthalmic devices, determined over a range of laser writing system parameters; (b) determining at least one design characteristic of the ophthalmic device; and (c) using at least the determined material and design characteristics, configuring at least one system parameter of the laser writing system to optimize throughput of the laser writing system, the laser writing system including: (i) a laser configured to generate a laser beam, (ii) a splitter configured to split the laser beam into a plurality of outputs, and (iii) a plurality of writing heads, each writing head configured to direct at least one of the outputs to an ophthalmic device to write one or more localized refractive index modifications into the ophthalmic device.
摘要:
An optical device comprising an optical hydrogel with select regions that have been irradiated with laser light having a pulse energy from 0.01 nJ to 50 nJ and a wavelength from 600 nm to 900 nm. The irradiated regions are characterized by a positive change in refractive index of from 0.01 to 0.06, and exhibit little or no scattering loss. The optical hydrogel is prepared with a hydrophilic monomer.
摘要:
A refractive index writing system includes a pulsed laser source, an objective lens for focusing an output of the pulsed laser source to a focal spot in an optical material, and a scanner for relatively moving the focal spot with respect to the optical material along a scan region. A beam multiplexer divides the output of the laser source into at least two working beams that are focused to variously shaped focal spots within the optical material. A controller controls at least one of a temporal and a spatial offset between the focal spots of the working beams together with the relative speed and direction of the scanner for maintaining an energy profile within the optical material along the scan region above a nonlinear absorption threshold of the optical material and below a breakdown threshold of the optical materials.
摘要:
A laser system for modifying the index of refraction of an optical hydrogel material. The laser system comprises a computer program to determine the position and shape of refractive structures to be written into the optical hydrogel material to correct a patient's vision, and a focused laser that generates laser light having a wavelength of from 400 nm to 900 nm, and which operates with an average power of 10 mW to 1000 mW to produce a pulse energy from 0.05 nJ to 1000 nJ with a peak intensity at focus of greater than 1013 W/cm2. The refractive structures exhibit a change in the index of refraction of 0.01 to 0.06 in the optical hydrogel material.
摘要:
A method for modifying the refractive index of an optical polymeric material. The method comprises continuously irradiating predetermined regions of an optical, polymeric material with femtosecond laser pulses to form a gradient index refractive structure within the material. The optical polymeric material can include a photosensitizer to increase the photoefficiency of the two-photo process resulting in the formation of the observed refractive structures. An optical device includes an optical, polymeric lens material having an anterior surface and posterior surface and an optical axis intersecting the surfaces and at least one laser-modified, GRIN layer disposed between the anterior surface and the posterior surface and arranged along a first axis 45° to 90° to the optical axis. The at least one laser-modified GRIN layer comprises a plurality of adjacent refractive segments characterized by a variation in index of refraction across at least one of at least a portion of the adjacent segments and along each segment.
摘要:
A laser system for modifying the index of refraction of an optical hydrogel material. The laser system comprises a computer program to determine the position and shape of refractive structures to be written into the optical hydrogel material to correct a patient's vision, and a focused laser that generates laser light having a wavelength of from 400 nm to 900 nm, and which operates with an average power of 10 mW to 1000 mW to produce a pulse energy from 0.05 nJ to 1000 nJ with a peak intensity at focus of greater than 1013 W/cm2. The refractive structures exhibit a change in the index of refraction of 0.01 to 0.06 in the optical hydrogel material.
摘要翻译:一种用于改变光学水凝胶材料的折射率的激光系统。 激光系统包括计算机程序,以确定要写入光学水凝胶材料的折射结构的位置和形状以校正患者的视力;以及聚焦激光,其产生波长为400nm至900nm的激光,以及 其以10mW至1000mW的平均功率工作,以产生从0.05nJ到1000nJ的脉冲能量,并且焦点处的峰值强度大于1013W / cm 2。 折射结构在光学水凝胶材料中表现出0.01至0.06的折射率变化。
摘要:
A method for modifying a refractive property of ocular tissue in an eye by creating at least one optically-modified gradient index (GRIN) layer in the corneal stroma and/or the crystalline by continuously scanning a continuous stream of laser pulses having a focal volume from a laser having a known average power along a continuous line having a smoothly changing refractive index within the tissue, and varying either or both of the scan speed and the laser average power during the scan. The method may further involve determining a desired vision correction adjustment, and determining a position, number, and design parameters of gradient index (GRIN) layers to be created within the ocular tissue to provide the desired vision correction.
摘要:
A method for modifying a refractive property of ocular tissue in an eye by creating at least one optically-modified gradient index (GRIN) layer in the corneal stroma and/or the crystalline by continuously scanning a continuous stream of laser pulses having a focal volume from a laser having a known average power along a continuous line having a smoothly changing refractive index within the tissue, and varying either or both of the scan speed and the laser average power during the scan. The method may further involve determining a desired vision correction adjustment, and determining a position, number, and design parameters of gradient index (GRIN) layers to be created within the ocular tissue to provide the desired vision correction.