Abstract:
A gas-turbine engine is provided comprising a high-pressure turbine, a low-pressure turbine aft of the high-pressure turbine, and a housing around the low-pressure turbine and the high-pressure turbine. A stator may be disposed between the low-pressure turbine and the high-pressure turbine with a boss formed on the stator. A bushing may be retained in the boss with a pin coupled to the housing and partially within the bushing. A method of mounting a full-ring stator is also provided, the method including the steps of inserting a bushing into a boss of the full-ring stator by press fitting, and inserting a pin into the bushing of the full-ring stator.
Abstract:
A gas turbine engine includes a turbine section including a first vane stage. The gas turbine engine further includes a combustor disposed forward of the first vane stage. The combustor includes a combustion chamber in fluid communication with the first vane stage. The combustion chamber is radially defined between a first shell and a second shell. The first shell includes a first seal assembly at an aft end of the first shell. The first seal assembly includes a conformal seal forming a first seal between the first shell and a forward face of the first vane stage. The second shell includes a second seal assembly at an aft end of the second shell. The second seal assembly includes a brush seal forming a second seal between the second shell and the forward face of the first vane stage.
Abstract:
A gas-turbine engine is provided. The gas-turbine engine comprises a high pressure turbine with an aft blade platform. A static structure may be disposed aft of the high pressure turbine and proximate a cavity defined by the aft blade platform. A vane of the static structure may have a vane platform with a shaped tip extending into the cavity.
Abstract:
A vane pack for a gas turbine engine includes an annular arrangement of vanes. A ring is secured around the vanes and extends proud of an axial end of the vanes.
Abstract:
A method is provided for reworking a component. The method includes at least partially filling a cavity in a non-fusion weldable base alloy with a multiple of layers of a multiple of laser powder deposition spots formed of a filler alloy. Each of the multiple of laser powder deposition spots at least partially overlaps at least one of another of the multiple of laser powder deposition spots. The filler alloy may be different than the non-fusion weldable base alloy.
Abstract:
An airfoil extends between radially inner and radially outer platforms. The airfoil extends between a leading edge and a trailing edge, and merges into facing surfaces of the radially inner and outer platforms. A variable fillet merges a facing surface of one of the radially inner and outer platforms into a wall of the airfoil. The variable fillet has a length extending away from a surface of the airfoil and a height extending away from the facing surface of at least one of the radially inner and outer platforms outwardly on to the airfoil. The variable fillet has a greater length at one of the leading edge and the trailing edge. A spaced portion has a shorter length at locations spaced from at least one of the leading and trailing edges. A mid-turbine frame and a gas turbine engine are also disclosed.
Abstract:
A gas-turbine engine is provided comprising a high-pressure turbine, a low-pressure turbine aft of the high-pressure turbine, and a housing around the low-pressure turbine and the high-pressure turbine. A stator may be disposed between the low-pressure turbine and the high-pressure turbine with a boss formed on the stator. A bushing may be retained in the boss with a pin coupled to the housing and partially within the bushing. A method of mounting a full-ring stator is also provided, the method including the steps of inserting a bushing into a boss of the full-ring stator by press fitting, and inserting a pin into the bushing of the full-ring stator.
Abstract:
A unitary one-piece hub has first and second rings and a midsection arranged between the first and second rings. The midsection includes a plurality of windows configured to receive a plurality of cross members. The windows include a lip configured to surround the cross members. A gas turbine engine and a method of providing a hub for a gas turbine engine are also disclosed.
Abstract:
A method is provided for reworking a component. The method includes at least partially filling a cavity in a non-fusion weldable base alloy with a multiple of layers of a multiple of laser powder deposition spots formed of a filler alloy. Each of the multiple of laser powder deposition spots at least partially overlaps at least one of another of the multiple of laser powder deposition spots. The filler alloy may be different than the non-fusion weldable base alloy.
Abstract:
A vane has an airfoil extending between a radially outer platform and a radially inner platform. At least one of the platforms has nominally radially thinner portions, and a pad defining a radially thicker portion. The pad has a radial thickness that is greater than a thickness of the nominal radially thinner portions. The pad surrounds an outer periphery of the airfoil on a side of the radially outer platform. The pad has a varying radial thickness. A mid-turbine frame and a gas turbine engine are also disclosed.