摘要:
The invention provides a recombinant microorganism that has been genetically engineered to contain metabolic pathway for the production of muconic acid from a salicylic acid intermediate. The genetically engineered metabolic pathway comprises both biosynthetic and biodegradative elements.
摘要:
The invention provides compounds, compositions, non-naturally occurring organisms, and methods useful for production of 5-hydroxytryptophan (5-HTP) in a microbial cell. A microbial system which includes at least one microbial cell, such as a bacterial cell or a yeast cell, is genetically engineered to express all or a portion of non-naturally occurring biosynthetic pathway that catalyzes the conversion of a simple carbon source, such as glucose, to 5-HTP. The invention can result in improved titers of 5-HTP and permits low-cost, large scale production. Methods of making and using the genetically engineered cells are also included in the invention.
摘要:
The invention provides compounds, compositions, non-naturally occurring organisms, and methods useful for production of 5-hydroxytryptophan (5-HTP) in a microbial cell. A microbial system which includes at least one microbial cell, such as a bacterial cell or a yeast cell, is genetically engineered to express all or a portion of non-naturally occurring biosynthetic pathway that catalyzes the conversion of a simple carbon source, such as glucose, to 5-HTP. The invention can result in improved titers of 5-HTP and permits low-cost, large scale production. Methods of making and using the genetically engineered cells are also included in the invention.
摘要:
Microorganisms are genetically engineered to synthesize caffeic acid from simple carbon sources via a tyrosine intermediate by means of a dual pathway that utilizes both endogenous and engineered enzymatic activities.
摘要:
5-hydroxytryptophan (5-HTP), a precursor of serotonin, is produced in a microbial host cell. A modified bacterial phenylalanine 4-hydroxylase (P4H) catalyzes the tryptophan 5-hydroxylation reaction. Optionally the host cell includes a cofactor regeneration mechanism, allowing continuous production of 5-HTP without supplementation of exogenous cofactors.
摘要:
Provided herein are methods for producing an ortho-hydroxylated phenylpropanoid. In one embodiment the method includes culturing a microbe that includes HpaBC activity in the presence of a phenylpropanoid substrate. Also provided are genetically engineered microbes engineered to have greater levels of HpaB and/or HpaC than a control microbe.
摘要:
Provided herein are methods for the biosynthesis of 4-hydroxycoumarin. In one embodiment, provided herein are genetically engineered microbes that include a metabolic pathway for the production of 4-hydroxycoumarin. Also provided are methods for using the genetically engineered microbes to produce 4-hydroxycoumarin, and using the 4-hydroxycoumarin as the starting point for the synthesis of other compounds.
摘要:
5-hydroxytryptophan (5-HTP), a precursor of serotonin, is produced in a microbial host cell. A modified bacterial phenylalanine 4-hydroxylase (P4H) catalyzes the tryptophan 5-hydroxylation reaction. Optionally the host cell includes a cofactor regeneration mechanism, allowing continuous production of 5-HTP without supplementation of exogenous cofactors.
摘要:
5-hydroxytryptophan (5-HTP), a precursor of serotonin, is produced in a microbial host cell. A modified bacterial phenylalanine 4-hydroxylase (P4H) catalyzes the tryptophan 5-hydroxylation reaction. Optionally the host cell includes a cofactor regeneration mechanism, allowing continuous production of 5-HTP without supplementation of exogenous cofactors.
摘要:
The invention provides a recombinant microorganism that has been genetically engineered to contain metabolic pathway for the production of muconic acid from a salicylic acid intermediate. The genetically engineered metabolic pathway comprises both biosynthetic and biodegradative elements.