摘要:
A low friction wear surface with a coefficient of friction in the superlubric regime including graphene and nanoparticles on the wear surface is provided, and methods of producing the low friction wear surface are also provided. A long lifetime wear-resistant surface including graphene exposed to hydrogen is provided, including methods of increasing the lifetime of graphene containing wear surfaces by providing hydrogen to the wear surface.
摘要:
The disclosure relates to a method for forming a low refractive index layer on a substrate. The method generally includes (a) applying a block copolymer layer on a substrate, the block copolymer including a polar polymeric block and a non-polar polymeric block; (b) swelling the block copolymer layer with a solvent to increase the block copolymer layer thickness; (c) depositing a metal oxide or metalloid oxide layer on polar polymeric blocks of the block copolymer layer; and (d) removing the block copolymer layer from the substrate, thereby forming a porous metal oxide or metalloid oxide layer on the substrate.
摘要:
A method for designing new materials for superlubricity comprises developing, on a computational system, a computational supercell comprising x unit cells of a base material, each unit cell comprising y atoms of the base material. The computational system replaces randomly chosen z atoms of the base material with an impurity atom of an impurity material to form a candidate material. The computational system determines volumetric strain of the candidate material. In response to the volumetric strain exceeding a predetermined threshold, the computational system determines that the candidate material has superlubricity. The computational system displays the candidate material to a user if the candidate material has superlubricity.
摘要:
A low friction wear surface with a coefficient of friction in the superlubric regime including graphene and nanoparticles on the wear surface is provided, and methods of producing the low friction wear surface are also provided. A long lifetime wear-resistant surface including graphene exposed to hydrogen is provided, including methods of increasing the lifetime of graphene containing wear surfaces by providing hydrogen to the wear surface.
摘要:
A low friction wear surface with a coefficient of friction in the superlubric regime including graphene and nanoparticles on the wear surface is provided, and methods of producing the low friction wear surface are also provided. A long lifetime wear resistant surface including graphene exposed to hydrogen is provided, including methods of increasing the lifetime of graphene containing wear surfaces by providing hydrogen to the wear surface.
摘要:
A low friction wear surface with a coefficient of friction in the superlubric regime including graphene and nanoparticles on the wear surface is provided, and methods of producing the low friction wear surface are also provided. A long lifetime wear-resistant surface including graphene exposed to hydrogen is provided, including methods of increasing the lifetime of graphene containing wear surfaces by providing hydrogen to the wear surface.
摘要:
A method for designing new materials for superlubricity comprises developing, on a computational system, a computational supercell comprising x unit cells of a base material, each unit cell comprising y atoms of the base material. The computational system replaces randomly chosen z atoms of the base material with an impurity atom of an impurity material to form a candidate material. The computational system determines volumetric strain of the candidate material. In response to the volumetric strain exceeding a predetermined threshold, the computational system determines that the candidate material has superlubricity. The computational system displays the candidate material to a user if the candidate material has superlubricity.
摘要:
A system and method for forming at least one of graphene and graphene oxide on a substrate and an opposed wear member. The system includes graphene and graphene oxide formed by an exfoliation process or solution processing method to dispose graphene and/or graphene oxide onto a substrate. The system further includes an opposing wear member disposed on another substrate and a gas atmosphere of an inert gas like N2, ambient, a humid atmosphere and a water solution.
摘要:
A system and method for forming graphene layers on a substrate. The system and methods include direct growth of graphene on diamond and low temperature growth of graphene using a solid carbon source.
摘要:
The disclosure relates to a method for forming a low refractive index layer on a substrate. The method generally includes (a) applying a block copolymer layer on a substrate, the block copolymer including a polar polymeric block and a non-polar polymeric block; (b) swelling the block copolymer layer with a solvent to increase the block copolymer layer thickness; (c) depositing a metal oxide or metalloid oxide layer on polar polymeric blocks of the block copolymer layer; and (d) removing the block copolymer layer from the substrate, thereby forming a porous metal oxide or metalloid oxide layer on the substrate.