Abstract:
A method of remotely monitoring a status of a surge arrester disconnector includes providing a long-range wireless mesh communication system including a plurality of disconnectors organized in a plurality of clusters. Each cluster includes a plurality of disconnectors that are physically located within a same cluster area. At least one of the disconnectors in each cluster is coupled to a communication device of a predetermined communication range. The method includes transmitting, from a first cluster, a status signal indicative of a status of a first disconnector in the first cluster to a second cluster located within the predetermined communication range, and consecutively transmitting the status signal from the second cluster to a third cluster within the predetermined communication range, until reaching an end cluster. The method includes transmitting, from the end cluster, the status signal to a monitoring station, and monitoring the status of the first disconnector at the monitoring station based on a result of transmission of the status signal.
Abstract:
A method of remotely monitoring a status of a surge arrester disconnector includes providing a long-range wireless mesh communication system including a plurality of disconnectors organized in a plurality of clusters. Each cluster includes a plurality of disconnectors that are physically located within a same cluster area. At least one of the disconnectors in each cluster is coupled to a communication device of a predetermined communication range. The method includes transmitting, from a first cluster, a status signal indicative of a status of a first disconnector in the first cluster to a second cluster located within the predetermined communication range, and consecutively transmitting the status signal from the second cluster to a third cluster within the predetermined communication range, until reaching an end cluster. The method includes transmitting, from the end cluster, the status signal to a monitoring station, and monitoring the status of the first disconnector at the monitoring station based on a result of transmission of the status signal.
Abstract:
Provided according to embodiments of the invention are electrical stress grading compositions that include a polymer, inorganic nanoplatelets, and inorganic filler particles, wherein the inorganic nanoplatelets and the inorganic filler particles are dispersed in the polymer. Also provided are electrical devices that include such electrical stress grading compositions including, for example, power cable accessories, insulators, bushings, and surge arrestors. Further provided according to embodiments of the invention are methods of forming electrical stress grading compositions.
Abstract:
An elastomeric material for providing electrical stress control comprises 5 to 40 volume percent low structured carbon black, 0.5 to 10 volume percent of high structured carbon black, up to about 30 volume percent of high permittivity inorganic fillers, and a remainder of polymeric carrier material and functional additives.
Abstract:
A method for preparing a polymer insulated cable including a semiconductive layer surrounding a polymeric insulation layer includes: cutting the semiconductive layer by grinding a circumferential dividing groove in the semiconductive layer using a rotating grinding surface, wherein the dividing groove defines first and second semiconductive sections of the semiconductive layer on opposed sides of the dividing groove; and thereafter removing the second semiconductive section from the polymeric insulation layer while retaining the first semiconductive section on the polymeric insulation layer.
Abstract:
A cable connection assembly includes an electrically conductive cable, an electrically conductive connector, and a flowable sealant. The electrical cable includes a conductor. The connector includes a connector body having an outer surface and a lengthwise connector axis. The connector body defines a conductor cavity receiving the conductor of the electrical cable. The connector further includes a sealant flow blocking wall on the connector body and extending radially outwardly from the outer surface of the connector body. The flowable sealant surrounds a portion of the connector body. The sealant flow blocking wall is configured to inhibit flow of the sealant on the outer surface along the lengthwise connector axis.
Abstract:
A method for preparing a polymer insulated cable including a semiconductive layer surrounding a polymeric insulation layer includes: cutting the semiconductive layer by grinding a circumferential dividing groove in the semiconductive layer using a rotating grinding surface, wherein the dividing groove defines first and second semiconductive sections of the semiconductive layer on opposed sides of the dividing groove; and thereafter removing the second semiconductive section from the polymeric insulation layer while retaining the first semiconductive section on the polymeric insulation layer.
Abstract:
A protective cover and an electrical connector assembly having the protective cover are disclosed. The protective cover has a body formed of an at least partly transparent or translucent electrically insulating material and an opaque electrically conductive layer disposed on the body. The electrically conductive layer has a radiation window penetrable by optical radiation formed by a plurality of radiation passages.
Abstract:
An electrical cable splice is disclosed. The electrical cable splice comprises a dimensionally recoverable sleeve covering a connection region of a plurality of joined together conductive cores. The dimensionally recoverable sleeve mechanically and electrically connects the conductive cores to each other.
Abstract:
A joint body for protecting an electrical cable connection including an electrical cable includes an expandable, elastomeric bladder sleeve and an electrically insulating gel. The bladder sleeve defines a gel cavity and a cable passage to receive the electrical cable. The gel is disposed in the gel cavity and surrounds at least a portion of the cable passage. The joint body is configured to be installed on the connection such that the connection is disposed in the cable passage and is surrounded and electrically insulated by the gel.